Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802159733> ?p ?o ?g. }
- W2802159733 endingPage "1207" @default.
- W2802159733 startingPage "1201" @default.
- W2802159733 abstract "The World Health Organization has recently placed new emphasis on the integration of genetic information for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation.MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate dehydrogenase 1 (IDH1) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features critical for successful classification.Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status, 83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR suppression, extent of edema, extent of necrosis, and textural features.Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior feature selection or human-directed training." @default.
- W2802159733 created "2018-05-17" @default.
- W2802159733 creator A5001224785 @default.
- W2802159733 creator A5001367440 @default.
- W2802159733 creator A5005492660 @default.
- W2802159733 creator A5013455359 @default.
- W2802159733 creator A5020993787 @default.
- W2802159733 creator A5041536073 @default.
- W2802159733 creator A5045127913 @default.
- W2802159733 creator A5047154962 @default.
- W2802159733 creator A5049843981 @default.
- W2802159733 creator A5066820418 @default.
- W2802159733 creator A5075209009 @default.
- W2802159733 creator A5080655484 @default.
- W2802159733 creator A5081059312 @default.
- W2802159733 creator A5088813478 @default.
- W2802159733 date "2018-05-10" @default.
- W2802159733 modified "2023-10-14" @default.
- W2802159733 title "Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas" @default.
- W2802159733 cites W1849277567 @default.
- W2802159733 cites W1871050032 @default.
- W2802159733 cites W1986396310 @default.
- W2802159733 cites W1993473032 @default.
- W2802159733 cites W1993605227 @default.
- W2802159733 cites W2035855834 @default.
- W2802159733 cites W2052644075 @default.
- W2802159733 cites W2052681965 @default.
- W2802159733 cites W2059624809 @default.
- W2802159733 cites W2071970335 @default.
- W2802159733 cites W2081583091 @default.
- W2802159733 cites W2082526668 @default.
- W2802159733 cites W2083927153 @default.
- W2802159733 cites W2105100844 @default.
- W2802159733 cites W2105348749 @default.
- W2802159733 cites W2119440128 @default.
- W2802159733 cites W2123040085 @default.
- W2802159733 cites W2125403904 @default.
- W2802159733 cites W2126817554 @default.
- W2802159733 cites W2133865472 @default.
- W2802159733 cites W2146119524 @default.
- W2802159733 cites W2147013683 @default.
- W2802159733 cites W2148726987 @default.
- W2802159733 cites W2149080643 @default.
- W2802159733 cites W2154898479 @default.
- W2802159733 cites W2165274879 @default.
- W2802159733 cites W2194775991 @default.
- W2802159733 cites W2263206910 @default.
- W2802159733 cites W2322371438 @default.
- W2802159733 cites W2366536035 @default.
- W2802159733 cites W2509087943 @default.
- W2802159733 cites W2514505281 @default.
- W2802159733 cites W2565978524 @default.
- W2802159733 cites W2580208371 @default.
- W2802159733 cites W2593808165 @default.
- W2802159733 cites W2605717159 @default.
- W2802159733 cites W2608231518 @default.
- W2802159733 cites W2618530766 @default.
- W2802159733 cites W2743501370 @default.
- W2802159733 cites W2770261599 @default.
- W2802159733 cites W2919115771 @default.
- W2802159733 doi "https://doi.org/10.3174/ajnr.a5667" @default.
- W2802159733 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6880932" @default.
- W2802159733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29748206" @default.
- W2802159733 hasPublicationYear "2018" @default.
- W2802159733 type Work @default.
- W2802159733 sameAs 2802159733 @default.
- W2802159733 citedByCount "302" @default.
- W2802159733 countsByYear W28021597332018 @default.
- W2802159733 countsByYear W28021597332019 @default.
- W2802159733 countsByYear W28021597332020 @default.
- W2802159733 countsByYear W28021597332021 @default.
- W2802159733 countsByYear W28021597332022 @default.
- W2802159733 countsByYear W28021597332023 @default.
- W2802159733 crossrefType "journal-article" @default.
- W2802159733 hasAuthorship W2802159733A5001224785 @default.
- W2802159733 hasAuthorship W2802159733A5001367440 @default.
- W2802159733 hasAuthorship W2802159733A5005492660 @default.
- W2802159733 hasAuthorship W2802159733A5013455359 @default.
- W2802159733 hasAuthorship W2802159733A5020993787 @default.
- W2802159733 hasAuthorship W2802159733A5041536073 @default.
- W2802159733 hasAuthorship W2802159733A5045127913 @default.
- W2802159733 hasAuthorship W2802159733A5047154962 @default.
- W2802159733 hasAuthorship W2802159733A5049843981 @default.
- W2802159733 hasAuthorship W2802159733A5066820418 @default.
- W2802159733 hasAuthorship W2802159733A5075209009 @default.
- W2802159733 hasAuthorship W2802159733A5080655484 @default.
- W2802159733 hasAuthorship W2802159733A5081059312 @default.
- W2802159733 hasAuthorship W2802159733A5088813478 @default.
- W2802159733 hasBestOaLocation W28021597331 @default.
- W2802159733 hasConcept C101070640 @default.
- W2802159733 hasConcept C104317684 @default.
- W2802159733 hasConcept C108583219 @default.
- W2802159733 hasConcept C126838900 @default.
- W2802159733 hasConcept C127848430 @default.
- W2802159733 hasConcept C143409427 @default.
- W2802159733 hasConcept C154945302 @default.
- W2802159733 hasConcept C181199279 @default.
- W2802159733 hasConcept C2777150147 @default.