Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802179713> ?p ?o ?g. }
- W2802179713 endingPage "5833" @default.
- W2802179713 startingPage "5824" @default.
- W2802179713 abstract "Foams in the oil and gas industry have been used as divergent fluids to attenuate the fluid channeling in high-permeability zones. Commonly, foams are generated using a surfactant solution in high-permeability reservoirs, which exhibit stability problems. Therefore, the main objective of this study is to stabilize the foams by the addition of modified silica nanoparticles, varying the surface acidity and polarity for natural gas flooding in tight gas-condensated reservoirs. Four types of modified silica-based nanoparticles with varying surface acidity and polarity (coated with vacuum residue) were synthesized and evaluated using surfactant adsorption. The basic nanoparticles exhibited a greater adsorption capacity of the surfactant, reaching an adsorbed amount of approximately 200 mg of surfactant per gram of nanoparticles, and Type I adsorption behavior. Foams were generated and evaluated based on their stability using two routes, namely, (1) with mechanical agitation and (2) methane flooding, to determine the optimal concentration of nanoparticles to be used. In both scenarios, foam height was monitored against time, and the half-life of the foam was established. The nanofluid prepared using a surfactant solution and 500 mg/L of basic nanoparticles reached a half-life 41% greater than that of the fluid that does not contain nanoparticles. In addition, a core flooding test was performed to evaluate the generation and perdurability of the foam (with and without nanoparticles) by methane flooding and the mobility reduction at typical reservoir conditions (confinement and pore pressure of 5200 and 1200 psi, respectively, and temperature of 100 °C). The porous medium was obtained from a tight gas-condensate reservoir, and it has an absolute permeability of 65.1 mD and a porosity of 7%. The oil recovery with methane injection was about 52%; with foam injection, an additional 10% was obtained, and an 18% additional recovery was reached with the injection of foam and nanoparticles." @default.
- W2802179713 created "2018-05-17" @default.
- W2802179713 creator A5001730480 @default.
- W2802179713 creator A5005984561 @default.
- W2802179713 creator A5009532860 @default.
- W2802179713 creator A5032408644 @default.
- W2802179713 creator A5037859404 @default.
- W2802179713 creator A5059160802 @default.
- W2802179713 creator A5089629039 @default.
- W2802179713 date "2018-04-24" @default.
- W2802179713 modified "2023-10-18" @default.
- W2802179713 title "Effects of Surface Acidity and Polarity of SiO<sub>2</sub> Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs" @default.
- W2802179713 cites W1419411308 @default.
- W2802179713 cites W1507118930 @default.
- W2802179713 cites W1964471460 @default.
- W2802179713 cites W1965761122 @default.
- W2802179713 cites W1966365224 @default.
- W2802179713 cites W1966773367 @default.
- W2802179713 cites W1967568551 @default.
- W2802179713 cites W1972046581 @default.
- W2802179713 cites W1974460194 @default.
- W2802179713 cites W1979387937 @default.
- W2802179713 cites W1980670254 @default.
- W2802179713 cites W1984550631 @default.
- W2802179713 cites W1991197654 @default.
- W2802179713 cites W1997635883 @default.
- W2802179713 cites W1997783064 @default.
- W2802179713 cites W2000682038 @default.
- W2802179713 cites W2000703055 @default.
- W2802179713 cites W2005043317 @default.
- W2802179713 cites W2009602891 @default.
- W2802179713 cites W2011254969 @default.
- W2802179713 cites W2015827058 @default.
- W2802179713 cites W2019842804 @default.
- W2802179713 cites W2024942214 @default.
- W2802179713 cites W2042330213 @default.
- W2802179713 cites W2046229661 @default.
- W2802179713 cites W2062810197 @default.
- W2802179713 cites W2064544706 @default.
- W2802179713 cites W2065331952 @default.
- W2802179713 cites W2068492511 @default.
- W2802179713 cites W2069862987 @default.
- W2802179713 cites W2075512837 @default.
- W2802179713 cites W2083265912 @default.
- W2802179713 cites W2085166538 @default.
- W2802179713 cites W2088231174 @default.
- W2802179713 cites W2104737419 @default.
- W2802179713 cites W2119872552 @default.
- W2802179713 cites W2122798958 @default.
- W2802179713 cites W2144998589 @default.
- W2802179713 cites W2254576176 @default.
- W2802179713 cites W2266330652 @default.
- W2802179713 cites W2319510619 @default.
- W2802179713 cites W2327542616 @default.
- W2802179713 cites W2329424237 @default.
- W2802179713 cites W2329446157 @default.
- W2802179713 cites W2333709440 @default.
- W2802179713 cites W240600488 @default.
- W2802179713 cites W2411117171 @default.
- W2802179713 cites W2512130048 @default.
- W2802179713 cites W2523809774 @default.
- W2802179713 cites W2528118061 @default.
- W2802179713 cites W2552493501 @default.
- W2802179713 cites W2560035330 @default.
- W2802179713 cites W2563094097 @default.
- W2802179713 cites W2596329033 @default.
- W2802179713 cites W2606470164 @default.
- W2802179713 cites W2612834637 @default.
- W2802179713 cites W2755634098 @default.
- W2802179713 cites W2782526023 @default.
- W2802179713 cites W3148219019 @default.
- W2802179713 cites W4232632413 @default.
- W2802179713 cites W4243842029 @default.
- W2802179713 cites W4254405938 @default.
- W2802179713 cites W4301455501 @default.
- W2802179713 cites W4379250838 @default.
- W2802179713 cites W73522474 @default.
- W2802179713 cites W869631388 @default.
- W2802179713 cites W1972168132 @default.
- W2802179713 doi "https://doi.org/10.1021/acs.energyfuels.8b00665" @default.
- W2802179713 hasPublicationYear "2018" @default.
- W2802179713 type Work @default.
- W2802179713 sameAs 2802179713 @default.
- W2802179713 citedByCount "50" @default.
- W2802179713 countsByYear W28021797132018 @default.
- W2802179713 countsByYear W28021797132019 @default.
- W2802179713 countsByYear W28021797132020 @default.
- W2802179713 countsByYear W28021797132021 @default.
- W2802179713 countsByYear W28021797132022 @default.
- W2802179713 countsByYear W28021797132023 @default.
- W2802179713 crossrefType "journal-article" @default.
- W2802179713 hasAuthorship W2802179713A5001730480 @default.
- W2802179713 hasAuthorship W2802179713A5005984561 @default.
- W2802179713 hasAuthorship W2802179713A5009532860 @default.
- W2802179713 hasAuthorship W2802179713A5032408644 @default.
- W2802179713 hasAuthorship W2802179713A5037859404 @default.
- W2802179713 hasAuthorship W2802179713A5059160802 @default.
- W2802179713 hasAuthorship W2802179713A5089629039 @default.