Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802203651> ?p ?o ?g. }
- W2802203651 endingPage "241" @default.
- W2802203651 startingPage "230" @default.
- W2802203651 abstract "The vast installment of wind turbines and the development of condition monitoring system provides large amounts of operational data for condition monitoring and health management, while the lack of labeled data becomes one of the major challenges for the data analytics. To address this issue, this work presents an unsupervised anomaly detection approach for wind turbine condition monitoring, where a spatiotemporal graphical modeling method, spatiotemporal pattern network (STPN), is applied to extract the spatial and temporal features between the variables in the system, and an energy-based model, stacked Restricted Boltzmann Machine (RBM) is used to capture the system-wide patterns and then applied for condition monitoring. Case studies on three data sets are carried out including: (1) anomaly detection on a benchmark model for fault detection and isolation, (2) anomaly detection on an experimental data set with the normal condition and 11 fault conditions and (3) online condition monitoring using real data from a wind farm in northwest China. The results show that the proposed approach is capable of detecting the anomalies without the need for labeling data." @default.
- W2802203651 created "2018-05-17" @default.
- W2802203651 creator A5006190887 @default.
- W2802203651 creator A5008426533 @default.
- W2802203651 creator A5082173488 @default.
- W2802203651 date "2018-11-01" @default.
- W2802203651 modified "2023-10-16" @default.
- W2802203651 title "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring" @default.
- W2802203651 cites W1597576211 @default.
- W2802203651 cites W1764196764 @default.
- W2802203651 cites W1928824955 @default.
- W2802203651 cites W1971585691 @default.
- W2802203651 cites W1988499271 @default.
- W2802203651 cites W2010354868 @default.
- W2802203651 cites W2013748990 @default.
- W2802203651 cites W2053209543 @default.
- W2802203651 cites W2053315995 @default.
- W2802203651 cites W2064630666 @default.
- W2802203651 cites W2071709160 @default.
- W2802203651 cites W2091236895 @default.
- W2802203651 cites W2100495367 @default.
- W2802203651 cites W2120674393 @default.
- W2802203651 cites W2123879461 @default.
- W2802203651 cites W2133140849 @default.
- W2802203651 cites W2144994235 @default.
- W2802203651 cites W2157028949 @default.
- W2802203651 cites W2159577749 @default.
- W2802203651 cites W2166186596 @default.
- W2802203651 cites W2196381116 @default.
- W2802203651 cites W2265877679 @default.
- W2802203651 cites W2284033649 @default.
- W2802203651 cites W2286327257 @default.
- W2802203651 cites W2345325038 @default.
- W2802203651 cites W2397010914 @default.
- W2802203651 cites W2407925861 @default.
- W2802203651 cites W2410800439 @default.
- W2802203651 cites W2514847968 @default.
- W2802203651 cites W2523553285 @default.
- W2802203651 cites W2548383375 @default.
- W2802203651 cites W2557743590 @default.
- W2802203651 cites W2592806208 @default.
- W2802203651 cites W2623373422 @default.
- W2802203651 cites W2653623715 @default.
- W2802203651 cites W2726225399 @default.
- W2802203651 cites W2737199547 @default.
- W2802203651 cites W2753404085 @default.
- W2802203651 cites W2753867929 @default.
- W2802203651 cites W2766594298 @default.
- W2802203651 doi "https://doi.org/10.1016/j.renene.2018.04.059" @default.
- W2802203651 hasPublicationYear "2018" @default.
- W2802203651 type Work @default.
- W2802203651 sameAs 2802203651 @default.
- W2802203651 citedByCount "56" @default.
- W2802203651 countsByYear W28022036512018 @default.
- W2802203651 countsByYear W28022036512019 @default.
- W2802203651 countsByYear W28022036512020 @default.
- W2802203651 countsByYear W28022036512021 @default.
- W2802203651 countsByYear W28022036512022 @default.
- W2802203651 countsByYear W28022036512023 @default.
- W2802203651 crossrefType "journal-article" @default.
- W2802203651 hasAuthorship W2802203651A5006190887 @default.
- W2802203651 hasAuthorship W2802203651A5008426533 @default.
- W2802203651 hasAuthorship W2802203651A5082173488 @default.
- W2802203651 hasConcept C119599485 @default.
- W2802203651 hasConcept C121332964 @default.
- W2802203651 hasConcept C124101348 @default.
- W2802203651 hasConcept C127313418 @default.
- W2802203651 hasConcept C127413603 @default.
- W2802203651 hasConcept C12997251 @default.
- W2802203651 hasConcept C13280743 @default.
- W2802203651 hasConcept C152745839 @default.
- W2802203651 hasConcept C154945302 @default.
- W2802203651 hasConcept C165205528 @default.
- W2802203651 hasConcept C172707124 @default.
- W2802203651 hasConcept C175551986 @default.
- W2802203651 hasConcept C177264268 @default.
- W2802203651 hasConcept C185798385 @default.
- W2802203651 hasConcept C199360897 @default.
- W2802203651 hasConcept C205649164 @default.
- W2802203651 hasConcept C26873012 @default.
- W2802203651 hasConcept C2775846686 @default.
- W2802203651 hasConcept C2778449969 @default.
- W2802203651 hasConcept C41008148 @default.
- W2802203651 hasConcept C58489278 @default.
- W2802203651 hasConcept C67186912 @default.
- W2802203651 hasConcept C739882 @default.
- W2802203651 hasConcept C77088390 @default.
- W2802203651 hasConcept C78519656 @default.
- W2802203651 hasConcept C78600449 @default.
- W2802203651 hasConcept C79403827 @default.
- W2802203651 hasConceptScore W2802203651C119599485 @default.
- W2802203651 hasConceptScore W2802203651C121332964 @default.
- W2802203651 hasConceptScore W2802203651C124101348 @default.
- W2802203651 hasConceptScore W2802203651C127313418 @default.
- W2802203651 hasConceptScore W2802203651C127413603 @default.
- W2802203651 hasConceptScore W2802203651C12997251 @default.
- W2802203651 hasConceptScore W2802203651C13280743 @default.
- W2802203651 hasConceptScore W2802203651C152745839 @default.