Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802220769> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2802220769 endingPage "1441" @default.
- W2802220769 startingPage "1435" @default.
- W2802220769 abstract "Abstract Finding, counting and identifying animals is a central challenge in ecology. Most studies are limited by the time and cost of fieldwork by human observers. To increase the spatial and temporal breadth of sampling, ecologists are adopting passive image‐based monitoring approaches. While passive monitoring can expand data collection, a remaining obstacle is finding the small proportion of images containing ecological objects among the majority of frames containing only background scenes. I proposed a scene‐specific convolutional neural network for detecting animals of interest within long duration time‐lapse videos. Convolutional neural networks are a type of deep learning algorithm that have recently made significant advances in image classification. The approach was tested on videos of floral visitation by hummingbirds. Despite low frame rates, poor image quality, and complex video conditions, the model correctly classified over 90% of frames containing hummingbirds. Combining motion detection and image classification can substantially reduce the time investment in scoring images from passive monitoring studies. These results underscore the promise of deep learning to lead ecology into greater automation using passive image analysis. To help facilitate future applications, I created a desktop executable that can be used to apply pre‐trained models to videos, as well as reproducible scripts for training new models on local and cloud environments." @default.
- W2802220769 created "2018-05-17" @default.
- W2802220769 creator A5090854014 @default.
- W2802220769 date "2018-05-08" @default.
- W2802220769 modified "2023-10-12" @default.
- W2802220769 title "Scene‐specific convolutional neural networks for video‐based biodiversity detection" @default.
- W2802220769 cites W1774267230 @default.
- W2802220769 cites W1982025193 @default.
- W2802220769 cites W1991779457 @default.
- W2802220769 cites W2080655919 @default.
- W2802220769 cites W2097117768 @default.
- W2802220769 cites W2099480888 @default.
- W2802220769 cites W2108598243 @default.
- W2802220769 cites W2130736843 @default.
- W2802220769 cites W2160440387 @default.
- W2802220769 cites W2253590344 @default.
- W2802220769 cites W2299597245 @default.
- W2802220769 cites W2413367505 @default.
- W2802220769 cites W2417256080 @default.
- W2802220769 cites W2444688368 @default.
- W2802220769 cites W2493321289 @default.
- W2802220769 cites W2501604154 @default.
- W2802220769 cites W2551128771 @default.
- W2802220769 cites W2565879877 @default.
- W2802220769 cites W2585685076 @default.
- W2802220769 cites W2593327139 @default.
- W2802220769 cites W2606637138 @default.
- W2802220769 cites W2759692151 @default.
- W2802220769 cites W2767556927 @default.
- W2802220769 cites W2919115771 @default.
- W2802220769 cites W3102619772 @default.
- W2802220769 doi "https://doi.org/10.1111/2041-210x.13011" @default.
- W2802220769 hasPublicationYear "2018" @default.
- W2802220769 type Work @default.
- W2802220769 sameAs 2802220769 @default.
- W2802220769 citedByCount "33" @default.
- W2802220769 countsByYear W28022207692019 @default.
- W2802220769 countsByYear W28022207692020 @default.
- W2802220769 countsByYear W28022207692021 @default.
- W2802220769 countsByYear W28022207692022 @default.
- W2802220769 countsByYear W28022207692023 @default.
- W2802220769 crossrefType "journal-article" @default.
- W2802220769 hasAuthorship W2802220769A5090854014 @default.
- W2802220769 hasBestOaLocation W28022207691 @default.
- W2802220769 hasConcept C108583219 @default.
- W2802220769 hasConcept C119857082 @default.
- W2802220769 hasConcept C153180895 @default.
- W2802220769 hasConcept C154945302 @default.
- W2802220769 hasConcept C31972630 @default.
- W2802220769 hasConcept C41008148 @default.
- W2802220769 hasConcept C81363708 @default.
- W2802220769 hasConceptScore W2802220769C108583219 @default.
- W2802220769 hasConceptScore W2802220769C119857082 @default.
- W2802220769 hasConceptScore W2802220769C153180895 @default.
- W2802220769 hasConceptScore W2802220769C154945302 @default.
- W2802220769 hasConceptScore W2802220769C31972630 @default.
- W2802220769 hasConceptScore W2802220769C41008148 @default.
- W2802220769 hasConceptScore W2802220769C81363708 @default.
- W2802220769 hasIssue "6" @default.
- W2802220769 hasLocation W28022207691 @default.
- W2802220769 hasOpenAccess W2802220769 @default.
- W2802220769 hasPrimaryLocation W28022207691 @default.
- W2802220769 hasRelatedWork W2611989081 @default.
- W2802220769 hasRelatedWork W3029198973 @default.
- W2802220769 hasRelatedWork W3133861977 @default.
- W2802220769 hasRelatedWork W3167935049 @default.
- W2802220769 hasRelatedWork W3193565141 @default.
- W2802220769 hasRelatedWork W4226493464 @default.
- W2802220769 hasRelatedWork W4293226380 @default.
- W2802220769 hasRelatedWork W4312417841 @default.
- W2802220769 hasRelatedWork W4375867731 @default.
- W2802220769 hasRelatedWork W4380075502 @default.
- W2802220769 hasVolume "9" @default.
- W2802220769 isParatext "false" @default.
- W2802220769 isRetracted "false" @default.
- W2802220769 magId "2802220769" @default.
- W2802220769 workType "article" @default.