Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802227132> ?p ?o ?g. }
- W2802227132 endingPage "836" @default.
- W2802227132 startingPage "829" @default.
- W2802227132 abstract "We sought to determine the predictive value of 3-dimensional texture analysis of computerized tomography images for successful shock wave lithotripsy in patients with kidney stones.Patients with preoperative and postoperative computerized tomography, previously untreated kidney stones and a stone diameter of 5 to 20 mm were included in study. A total of 224, 3-dimensional texture analysis features of each kidney stone, including attenuation measured in HU and the clinical variables body mass index, initial stone size and skin to stone distance, were analyzed using 5 commonly used machine learning models. The data set was split in a ratio of 2/3 for model derivation and 1/3 for validation. Machine learning based predictions of shock wave lithotripsy success in the validation cohort were evaluated by calculating sensitivity, specificity and the AUC.For shock wave lithotripsy success the 3 clinical variables body mass index, initial stone size and skin to stone distance showed an AUC of 0.68, 0.58 and 0.63, respectively. No predictive value was found for HU. A random forest classifier using 3, 3-dimensional texture analysis features had an AUC of 0.79. By combining these 3 features with clinical variables discriminatory accuracy improved further with an AUC of 0.85 for 3-dimensional texture analysis features and skin to stone distance, an AUC of 0.8 for 3-dimensional texture analysis features and body mass index, and an AUC of 0.81 for 3-dimensional texture analysis and stone size.This preliminary study indicates that the clinical variables body mass index, initial stone size and skin to stone distance show limited value to predict shock wave lithotripsy success while stone HU values were not predictive. Select 3-dimensional texture analysis features identified by machine learning provided incremental accuracy to predict the success of shock wave lithotripsy." @default.
- W2802227132 created "2018-05-17" @default.
- W2802227132 creator A5011584203 @default.
- W2802227132 creator A5021147639 @default.
- W2802227132 creator A5028232149 @default.
- W2802227132 creator A5067287697 @default.
- W2802227132 creator A5075835655 @default.
- W2802227132 creator A5080326190 @default.
- W2802227132 date "2018-10-01" @default.
- W2802227132 modified "2023-09-25" @default.
- W2802227132 title "Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones" @default.
- W2802227132 cites W1562567944 @default.
- W2802227132 cites W1687319088 @default.
- W2802227132 cites W1745325928 @default.
- W2802227132 cites W1913829561 @default.
- W2802227132 cites W1970706614 @default.
- W2802227132 cites W1981996473 @default.
- W2802227132 cites W1984357449 @default.
- W2802227132 cites W2017088568 @default.
- W2802227132 cites W2018236346 @default.
- W2802227132 cites W2020178060 @default.
- W2802227132 cites W2049400303 @default.
- W2802227132 cites W2059995947 @default.
- W2802227132 cites W2064291260 @default.
- W2802227132 cites W2066473087 @default.
- W2802227132 cites W2076523237 @default.
- W2802227132 cites W2149880049 @default.
- W2802227132 cites W2154316284 @default.
- W2802227132 cites W2155634671 @default.
- W2802227132 cites W2253230790 @default.
- W2802227132 cites W2339134143 @default.
- W2802227132 cites W2366292433 @default.
- W2802227132 cites W2584028742 @default.
- W2802227132 cites W2606167931 @default.
- W2802227132 cites W2611657216 @default.
- W2802227132 cites W2749102172 @default.
- W2802227132 cites W2790566891 @default.
- W2802227132 cites W4230391972 @default.
- W2802227132 doi "https://doi.org/10.1016/j.juro.2018.04.059" @default.
- W2802227132 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29673945" @default.
- W2802227132 hasPublicationYear "2018" @default.
- W2802227132 type Work @default.
- W2802227132 sameAs 2802227132 @default.
- W2802227132 citedByCount "35" @default.
- W2802227132 countsByYear W28022271322018 @default.
- W2802227132 countsByYear W28022271322019 @default.
- W2802227132 countsByYear W28022271322020 @default.
- W2802227132 countsByYear W28022271322021 @default.
- W2802227132 countsByYear W28022271322022 @default.
- W2802227132 countsByYear W28022271322023 @default.
- W2802227132 crossrefType "journal-article" @default.
- W2802227132 hasAuthorship W2802227132A5011584203 @default.
- W2802227132 hasAuthorship W2802227132A5021147639 @default.
- W2802227132 hasAuthorship W2802227132A5028232149 @default.
- W2802227132 hasAuthorship W2802227132A5067287697 @default.
- W2802227132 hasAuthorship W2802227132A5075835655 @default.
- W2802227132 hasAuthorship W2802227132A5080326190 @default.
- W2802227132 hasBestOaLocation W28022271322 @default.
- W2802227132 hasConcept C126322002 @default.
- W2802227132 hasConcept C126838900 @default.
- W2802227132 hasConcept C141071460 @default.
- W2802227132 hasConcept C154945302 @default.
- W2802227132 hasConcept C2777950166 @default.
- W2802227132 hasConcept C2779403450 @default.
- W2802227132 hasConcept C2780221984 @default.
- W2802227132 hasConcept C2989005 @default.
- W2802227132 hasConcept C3018013779 @default.
- W2802227132 hasConcept C41008148 @default.
- W2802227132 hasConcept C71924100 @default.
- W2802227132 hasConceptScore W2802227132C126322002 @default.
- W2802227132 hasConceptScore W2802227132C126838900 @default.
- W2802227132 hasConceptScore W2802227132C141071460 @default.
- W2802227132 hasConceptScore W2802227132C154945302 @default.
- W2802227132 hasConceptScore W2802227132C2777950166 @default.
- W2802227132 hasConceptScore W2802227132C2779403450 @default.
- W2802227132 hasConceptScore W2802227132C2780221984 @default.
- W2802227132 hasConceptScore W2802227132C2989005 @default.
- W2802227132 hasConceptScore W2802227132C3018013779 @default.
- W2802227132 hasConceptScore W2802227132C41008148 @default.
- W2802227132 hasConceptScore W2802227132C71924100 @default.
- W2802227132 hasIssue "4" @default.
- W2802227132 hasLocation W28022271321 @default.
- W2802227132 hasLocation W28022271322 @default.
- W2802227132 hasLocation W28022271323 @default.
- W2802227132 hasOpenAccess W2802227132 @default.
- W2802227132 hasPrimaryLocation W28022271321 @default.
- W2802227132 hasRelatedWork W1988898388 @default.
- W2802227132 hasRelatedWork W2010469814 @default.
- W2802227132 hasRelatedWork W2129501383 @default.
- W2802227132 hasRelatedWork W2291105023 @default.
- W2802227132 hasRelatedWork W2519663568 @default.
- W2802227132 hasRelatedWork W2905470517 @default.
- W2802227132 hasRelatedWork W4297833320 @default.
- W2802227132 hasRelatedWork W4309161505 @default.
- W2802227132 hasRelatedWork W1649127786 @default.
- W2802227132 hasRelatedWork W2108081204 @default.
- W2802227132 hasVolume "200" @default.
- W2802227132 isParatext "false" @default.