Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802258266> ?p ?o ?g. }
- W2802258266 endingPage "10" @default.
- W2802258266 startingPage "1" @default.
- W2802258266 abstract "In livestock systems of the Argentinean Pampas, its forage production stability relies on the integration of two landcovers, annual forage crop sequences and perennial pastures. Despite the key role that these forage cropping systems have on current milk and beef production, it is unclear how year-by-year variability of precipitation affect forage dry matter (DM) yield and precipitation use efficiency (PUE, i.e. the quotient between forage DM yield and precipitation). The aims of this study were to analyze the impact (i) of year-by-year precipitation variability on DM yield and PUE of oats-maize (Avena sativa L. - Zea mays L.) double-crop and alfalfa (Medicago sativa L.) and (ii) of cumulative precipitation during the critical period of maize on DM yield and PUE of oats-maize double-crop. We used a modelling approach to estimate DM yield and PUE of oats-maize (sequence) and alfalfa in five locations of the Argentinean Pampas, which differed in annual precipitation (AP) and variability of it. Coefficient of variation (CV) was used as the main statistical variable to compare the variability of AP (CVAP), DM yield (CVDM), and PUE (CVPUE). Mean DM yield of both landcovers was higher in locations with high AP (>800 mm) than with low AP (<800 mm). Although alfalfa had lower mean DM yield than sequence in all locations, it showed a lower CVDM than sequence. In contrast, sequence showed lower and higher CVDM than CVAP, depending on location. Moreover, changes in DM yield due to variations of AP were higher in sequence than in alfalfa. On the other hand, mean PUE was higher for sequence (2.2 g DM m−2 mm−1) than that of alfalfa (1.6 g DM m−2 mm−1). The CVPUE between locations, i.e. an index that reflects the spatial variability, ranged from 20 for the sequence to 68% for alfalfa, whereas CVPUE between years, i.e. an index that reflects the temporal variability, ranged from 16 to 31 % for both landcovers. Precipitation use efficiency tended to be similar across locations in years with low AP (<800 mm) compared to years with high AP (>800 mm). Our results provided valuable knowledge for decision making in livestock systems of this region through the development of spatial and temporal models between DM yield and AP. In a broader sense, they also showed that shifts from perennial to seasonal forage covers increased yields but also its inter-annual variability, posing a risk for farmers." @default.
- W2802258266 created "2018-05-17" @default.
- W2802258266 creator A5000227083 @default.
- W2802258266 creator A5025716887 @default.
- W2802258266 creator A5033955383 @default.
- W2802258266 creator A5049909506 @default.
- W2802258266 date "2018-09-01" @default.
- W2802258266 modified "2023-10-06" @default.
- W2802258266 title "Modelling inter-annual variation in dry matter yield and precipitation use efficiency of perennial pastures and annual forage crops sequences" @default.
- W2802258266 cites W1912115992 @default.
- W2802258266 cites W1975422526 @default.
- W2802258266 cites W1978249690 @default.
- W2802258266 cites W1989849883 @default.
- W2802258266 cites W1993450077 @default.
- W2802258266 cites W1996072813 @default.
- W2802258266 cites W1998097242 @default.
- W2802258266 cites W1998706805 @default.
- W2802258266 cites W1999385423 @default.
- W2802258266 cites W2004813502 @default.
- W2802258266 cites W2005486973 @default.
- W2802258266 cites W2011109812 @default.
- W2802258266 cites W2014147520 @default.
- W2802258266 cites W2014800736 @default.
- W2802258266 cites W2016626958 @default.
- W2802258266 cites W2017541266 @default.
- W2802258266 cites W2017647330 @default.
- W2802258266 cites W2036123899 @default.
- W2802258266 cites W2047619878 @default.
- W2802258266 cites W2048382588 @default.
- W2802258266 cites W2050781579 @default.
- W2802258266 cites W2057776685 @default.
- W2802258266 cites W2060414546 @default.
- W2802258266 cites W2072701240 @default.
- W2802258266 cites W2072767280 @default.
- W2802258266 cites W2086469298 @default.
- W2802258266 cites W2111696952 @default.
- W2802258266 cites W2117173444 @default.
- W2802258266 cites W2125184369 @default.
- W2802258266 cites W2127109561 @default.
- W2802258266 cites W2127486632 @default.
- W2802258266 cites W2145047805 @default.
- W2802258266 cites W2152266294 @default.
- W2802258266 cites W2163143186 @default.
- W2802258266 cites W2172956642 @default.
- W2802258266 cites W2182133273 @default.
- W2802258266 cites W2194089420 @default.
- W2802258266 cites W2210906429 @default.
- W2802258266 cites W2285511517 @default.
- W2802258266 cites W2463290568 @default.
- W2802258266 cites W2471412513 @default.
- W2802258266 cites W2522235521 @default.
- W2802258266 cites W2609811433 @default.
- W2802258266 cites W2767520625 @default.
- W2802258266 cites W2774245775 @default.
- W2802258266 cites W2788240327 @default.
- W2802258266 cites W4242704687 @default.
- W2802258266 cites W62946943 @default.
- W2802258266 cites W893062291 @default.
- W2802258266 doi "https://doi.org/10.1016/j.agrformet.2018.04.014" @default.
- W2802258266 hasPublicationYear "2018" @default.
- W2802258266 type Work @default.
- W2802258266 sameAs 2802258266 @default.
- W2802258266 citedByCount "28" @default.
- W2802258266 countsByYear W28022582662018 @default.
- W2802258266 countsByYear W28022582662019 @default.
- W2802258266 countsByYear W28022582662020 @default.
- W2802258266 countsByYear W28022582662021 @default.
- W2802258266 countsByYear W28022582662022 @default.
- W2802258266 countsByYear W28022582662023 @default.
- W2802258266 crossrefType "journal-article" @default.
- W2802258266 hasAuthorship W2802258266A5000227083 @default.
- W2802258266 hasAuthorship W2802258266A5025716887 @default.
- W2802258266 hasAuthorship W2802258266A5033955383 @default.
- W2802258266 hasAuthorship W2802258266A5049909506 @default.
- W2802258266 hasConcept C107054158 @default.
- W2802258266 hasConcept C134121241 @default.
- W2802258266 hasConcept C137580998 @default.
- W2802258266 hasConcept C153294291 @default.
- W2802258266 hasConcept C191897082 @default.
- W2802258266 hasConcept C192562407 @default.
- W2802258266 hasConcept C205649164 @default.
- W2802258266 hasConcept C24461792 @default.
- W2802258266 hasConcept C2779370140 @default.
- W2802258266 hasConcept C2779908699 @default.
- W2802258266 hasConcept C2780138947 @default.
- W2802258266 hasConcept C6557445 @default.
- W2802258266 hasConcept C86803240 @default.
- W2802258266 hasConceptScore W2802258266C107054158 @default.
- W2802258266 hasConceptScore W2802258266C134121241 @default.
- W2802258266 hasConceptScore W2802258266C137580998 @default.
- W2802258266 hasConceptScore W2802258266C153294291 @default.
- W2802258266 hasConceptScore W2802258266C191897082 @default.
- W2802258266 hasConceptScore W2802258266C192562407 @default.
- W2802258266 hasConceptScore W2802258266C205649164 @default.
- W2802258266 hasConceptScore W2802258266C24461792 @default.
- W2802258266 hasConceptScore W2802258266C2779370140 @default.
- W2802258266 hasConceptScore W2802258266C2779908699 @default.
- W2802258266 hasConceptScore W2802258266C2780138947 @default.