Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802289692> ?p ?o ?g. }
- W2802289692 endingPage "J59" @default.
- W2802289692 startingPage "J43" @default.
- W2802289692 abstract "Inspired by the social behavior of birds or fish swarms, particle swarm optimization (PSO) is used to solve many engineering optimization problems. The PSO algorithm is mostly applied to the geophysical parametric inversion based on specific models, and it is rarely used to implement the physical property inversion of geophysical data. We have applied the standard PSO algorithm to the 2D inversion of magnetic data to recover the distribution of subsurface magnetization intensity. To manage the over-stochastic problem of a standard PSO inversion, the velocities of particle swarms are smoothed, and the [Formula: see text]-means clustering model constraint to the objective function is implemented to distinguish the multiple magnetic sources in the case of the complicated magnetic anomaly. The PSO inversion of magnetic data is tested using synthetic models. In the field examples of Galinge and Weigang iron ore deposits in China, concealed iron orebodies were detected, and the reconstructed magnetic source distribution yielded good agreement with the orebodies inferred from drillhole information. The uncertainty analysis results demonstrated that the recovered models using the PSO algorithm had lower reliability for the bottom and boundary areas of target sources because of the influence of observation noise and the weak magnetic response of deep-buried sources. The PSO algorithm obtained a sharp physical property distribution and demonstrated strong global optimization ability." @default.
- W2802289692 created "2018-05-17" @default.
- W2802289692 creator A5000979147 @default.
- W2802289692 creator A5004788238 @default.
- W2802289692 creator A5064766867 @default.
- W2802289692 date "2018-07-01" @default.
- W2802289692 modified "2023-09-26" @default.
- W2802289692 title "Particle swarm optimization inversion of magnetic data: Field examples from iron ore deposits in China" @default.
- W2802289692 cites W1663348328 @default.
- W2802289692 cites W1968644110 @default.
- W2802289692 cites W1968915050 @default.
- W2802289692 cites W1974661435 @default.
- W2802289692 cites W1975809244 @default.
- W2802289692 cites W1984256356 @default.
- W2802289692 cites W1986834168 @default.
- W2802289692 cites W1987591401 @default.
- W2802289692 cites W1996732238 @default.
- W2802289692 cites W2011378167 @default.
- W2802289692 cites W2011618626 @default.
- W2802289692 cites W2012031152 @default.
- W2802289692 cites W2016574294 @default.
- W2802289692 cites W2021637497 @default.
- W2802289692 cites W2037374906 @default.
- W2802289692 cites W2037732189 @default.
- W2802289692 cites W2043357063 @default.
- W2802289692 cites W2048235403 @default.
- W2802289692 cites W2053364889 @default.
- W2802289692 cites W2055475397 @default.
- W2802289692 cites W2058974375 @default.
- W2802289692 cites W2066963791 @default.
- W2802289692 cites W2074609861 @default.
- W2802289692 cites W2079221048 @default.
- W2802289692 cites W2082104806 @default.
- W2802289692 cites W2092148005 @default.
- W2802289692 cites W2098791789 @default.
- W2802289692 cites W2119970726 @default.
- W2802289692 cites W2132100155 @default.
- W2802289692 cites W2132404483 @default.
- W2802289692 cites W2146765527 @default.
- W2802289692 cites W2150904297 @default.
- W2802289692 cites W2152912428 @default.
- W2802289692 cites W2164289056 @default.
- W2802289692 cites W2169759926 @default.
- W2802289692 cites W2176661113 @default.
- W2802289692 cites W2316478558 @default.
- W2802289692 cites W2325461467 @default.
- W2802289692 cites W2330011453 @default.
- W2802289692 cites W2332990274 @default.
- W2802289692 cites W2345680641 @default.
- W2802289692 cites W2467662994 @default.
- W2802289692 cites W2559488099 @default.
- W2802289692 cites W2755766896 @default.
- W2802289692 cites W2756121956 @default.
- W2802289692 cites W2769308728 @default.
- W2802289692 cites W4214593133 @default.
- W2802289692 cites W4231058023 @default.
- W2802289692 cites W4246247112 @default.
- W2802289692 cites W4361866703 @default.
- W2802289692 cites W560683197 @default.
- W2802289692 doi "https://doi.org/10.1190/geo2017-0456.1" @default.
- W2802289692 hasPublicationYear "2018" @default.
- W2802289692 type Work @default.
- W2802289692 sameAs 2802289692 @default.
- W2802289692 citedByCount "31" @default.
- W2802289692 countsByYear W28022896922019 @default.
- W2802289692 countsByYear W28022896922020 @default.
- W2802289692 countsByYear W28022896922021 @default.
- W2802289692 countsByYear W28022896922022 @default.
- W2802289692 countsByYear W28022896922023 @default.
- W2802289692 crossrefType "journal-article" @default.
- W2802289692 hasAuthorship W2802289692A5000979147 @default.
- W2802289692 hasAuthorship W2802289692A5004788238 @default.
- W2802289692 hasAuthorship W2802289692A5064766867 @default.
- W2802289692 hasConcept C105795698 @default.
- W2802289692 hasConcept C11413529 @default.
- W2802289692 hasConcept C115260700 @default.
- W2802289692 hasConcept C117251300 @default.
- W2802289692 hasConcept C121332964 @default.
- W2802289692 hasConcept C126255220 @default.
- W2802289692 hasConcept C127313418 @default.
- W2802289692 hasConcept C143606050 @default.
- W2802289692 hasConcept C154945302 @default.
- W2802289692 hasConcept C160920958 @default.
- W2802289692 hasConcept C165205528 @default.
- W2802289692 hasConcept C1893757 @default.
- W2802289692 hasConcept C191897082 @default.
- W2802289692 hasConcept C192562407 @default.
- W2802289692 hasConcept C194482375 @default.
- W2802289692 hasConcept C2779748816 @default.
- W2802289692 hasConcept C33923547 @default.
- W2802289692 hasConcept C41008148 @default.
- W2802289692 hasConcept C62520636 @default.
- W2802289692 hasConcept C73555534 @default.
- W2802289692 hasConcept C76155785 @default.
- W2802289692 hasConcept C77928131 @default.
- W2802289692 hasConcept C8058405 @default.
- W2802289692 hasConcept C84174578 @default.
- W2802289692 hasConcept C85617194 @default.