Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802296803> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2802296803 endingPage "142" @default.
- W2802296803 startingPage "113" @default.
- W2802296803 abstract "There are myriad of security solutions that have been developed to tackle the Cyber Security attacks and malicious activities in digital world. They are firewalls, intrusion detection and prevention systems, anti-virus systems, honeypots etc. Despite employing these detection measures and protection mechanisms, the number of successful attacks and the level of sophistication of these attacks keep increasing day-by-day. Also, with the advent of Internet-of-Things, the number of devices connected to Internet has risen dramatically. The inability to detect attacks on these devices are due to (1) the lack of computational power for detecting attacks, (2) the lack of interfaces that could potentially indicate a compromise on this devices and (3) the lack of the ability to interact with the system to execute diagnostic tools. This warrants newer approaches such as Tier-1 Internet Service Provider level view of attack patterns to provide situational awareness of Cyber Security threats. We investigate and explore the event data generated by the Internet protocol Domain Name Systems (DNS) for the purpose of Cyber threat situational awareness. Traditional methods such as Static and Binary analysis of Malware are sometimes inadequate to address the proliferation of Malware due to the time taken to obtain and process the individual binaries in order to generate signatures. By the time the Anti-Malware signature is available, there is a chance that a significant amount of damage might have happened. The traditional Anti-Malware systems may not identify malicious activities. However, it may be detected faster through DNS protocol by analyzing the generated event data in a timely manner. As DNS was not designed with security in mind (or suffers from vulnerabilities), we explore how the vast amount of event data generated by these systems can be leveraged to create Cyber threat situational awareness. The main contributions of the book chapter are two-fold: (1). A scalable framework that can perform web scale analysis in near real-time that provide situational awareness. (2). Detect early warning signals before large scale attacks or malware propagation occurs. We employ deep learning approach to classify and correlate malicious events that are perceived from the protocol usage. To our knowledge this is the first time, a framework that can analyze and correlate the DNS usage information at continent scale or multiple Tier-1 Internet Service Provider scale has been studied and analyzed in real-time to provide situational awareness. Merely using a commodity hardware server, the developed framework is capable of analyzing more than 2 Million events per second and it could detect the malicious activities within them in near real-time. The developed framework can be scaled out to analyze even larger volumes of network event data by adding additional computing resources. The scalability and real-time detection of malicious activities from early warning signals makes the developed framework stand out from any system of similar kind." @default.
- W2802296803 created "2018-05-17" @default.
- W2802296803 creator A5029900047 @default.
- W2802296803 creator A5037692978 @default.
- W2802296803 creator A5040100735 @default.
- W2802296803 date "2018-01-01" @default.
- W2802296803 modified "2023-10-05" @default.
- W2802296803 title "Scalable Framework for Cyber Threat Situational Awareness Based on Domain Name Systems Data Analysis" @default.
- W2802296803 cites W1142781837 @default.
- W2802296803 cites W1479710165 @default.
- W2802296803 cites W2010392031 @default.
- W2802296803 cites W2064675550 @default.
- W2802296803 cites W2074021442 @default.
- W2802296803 cites W2102671922 @default.
- W2802296803 cites W2107878631 @default.
- W2802296803 cites W2110485445 @default.
- W2802296803 cites W2113344319 @default.
- W2802296803 cites W2771399008 @default.
- W2802296803 cites W2771644755 @default.
- W2802296803 cites W2772129543 @default.
- W2802296803 cites W2772633862 @default.
- W2802296803 cites W2772660489 @default.
- W2802296803 cites W2773456774 @default.
- W2802296803 cites W2773511604 @default.
- W2802296803 cites W2775103799 @default.
- W2802296803 cites W2775696952 @default.
- W2802296803 cites W2789786404 @default.
- W2802296803 cites W2792736988 @default.
- W2802296803 cites W2792815878 @default.
- W2802296803 cites W2919115771 @default.
- W2802296803 cites W4861383 @default.
- W2802296803 doi "https://doi.org/10.1007/978-981-10-8476-8_6" @default.
- W2802296803 hasPublicationYear "2018" @default.
- W2802296803 type Work @default.
- W2802296803 sameAs 2802296803 @default.
- W2802296803 citedByCount "47" @default.
- W2802296803 countsByYear W28022968032018 @default.
- W2802296803 countsByYear W28022968032019 @default.
- W2802296803 countsByYear W28022968032020 @default.
- W2802296803 countsByYear W28022968032021 @default.
- W2802296803 countsByYear W28022968032022 @default.
- W2802296803 countsByYear W28022968032023 @default.
- W2802296803 crossrefType "book-chapter" @default.
- W2802296803 hasAuthorship W2802296803A5029900047 @default.
- W2802296803 hasAuthorship W2802296803A5037692978 @default.
- W2802296803 hasAuthorship W2802296803A5040100735 @default.
- W2802296803 hasConcept C110875604 @default.
- W2802296803 hasConcept C127413603 @default.
- W2802296803 hasConcept C136764020 @default.
- W2802296803 hasConcept C145804949 @default.
- W2802296803 hasConcept C146978453 @default.
- W2802296803 hasConcept C191267431 @default.
- W2802296803 hasConcept C35525427 @default.
- W2802296803 hasConcept C38652104 @default.
- W2802296803 hasConcept C41008148 @default.
- W2802296803 hasConcept C541664917 @default.
- W2802296803 hasConceptScore W2802296803C110875604 @default.
- W2802296803 hasConceptScore W2802296803C127413603 @default.
- W2802296803 hasConceptScore W2802296803C136764020 @default.
- W2802296803 hasConceptScore W2802296803C145804949 @default.
- W2802296803 hasConceptScore W2802296803C146978453 @default.
- W2802296803 hasConceptScore W2802296803C191267431 @default.
- W2802296803 hasConceptScore W2802296803C35525427 @default.
- W2802296803 hasConceptScore W2802296803C38652104 @default.
- W2802296803 hasConceptScore W2802296803C41008148 @default.
- W2802296803 hasConceptScore W2802296803C541664917 @default.
- W2802296803 hasLocation W28022968031 @default.
- W2802296803 hasOpenAccess W2802296803 @default.
- W2802296803 hasPrimaryLocation W28022968031 @default.
- W2802296803 hasRelatedWork W1616547506 @default.
- W2802296803 hasRelatedWork W2035489246 @default.
- W2802296803 hasRelatedWork W2186252465 @default.
- W2802296803 hasRelatedWork W2774921354 @default.
- W2802296803 hasRelatedWork W2798341988 @default.
- W2802296803 hasRelatedWork W2800651634 @default.
- W2802296803 hasRelatedWork W2982616388 @default.
- W2802296803 hasRelatedWork W3199575202 @default.
- W2802296803 hasRelatedWork W3202075497 @default.
- W2802296803 hasRelatedWork W4313530783 @default.
- W2802296803 isParatext "false" @default.
- W2802296803 isRetracted "false" @default.
- W2802296803 magId "2802296803" @default.
- W2802296803 workType "book-chapter" @default.