Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802369897> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2802369897 abstract "Phonocardiogram (PCG) signal is a graphical representation of the heart sounds that can be used to diagnose a heart disease. Diagnosing heart disease based on PCG signal is more effective. Because of its ability to capture all heart sound components including S <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</inf> and S <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</inf> . Nevertheless, the interpretation of PCG signal is depend on the cardiologist's expertise. Therefore automated PCG signal classification is required in order to help the cardiologist diagnosing and monitoring heart disease. The classification of PCG signal is influenced by the segmentation and the feature extraction process. The segmentation process aims to detect the location of heart sound components including S <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</inf> and S <inf xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</inf> in PCG signal. However it is difficult to find those component in a noisy PCG signal. The feature extraction process aims to extract relevant features that lie in segmented PCG signal. This process is required because the segmented PCG signal has high dimensionality and redundant information. This study proposes Shannon Energy Envelope for segmenting PCG signal and Deep Belief Network (DBN) for feature extraction method. The results show that the proposed method outperforms shallow models in existing datasets." @default.
- W2802369897 created "2018-05-17" @default.
- W2802369897 creator A5035582649 @default.
- W2802369897 creator A5049612807 @default.
- W2802369897 creator A5059817827 @default.
- W2802369897 creator A5088280960 @default.
- W2802369897 date "2017-10-01" @default.
- W2802369897 modified "2023-10-13" @default.
- W2802369897 title "A classification method using deep belief network for phonocardiogram signal classification" @default.
- W2802369897 cites W1412963919 @default.
- W2802369897 cites W1673033330 @default.
- W2802369897 cites W1985242443 @default.
- W2802369897 cites W1994885532 @default.
- W2802369897 cites W2086530527 @default.
- W2802369897 cites W2100495367 @default.
- W2802369897 cites W2136922672 @default.
- W2802369897 cites W2184139745 @default.
- W2802369897 cites W2190746225 @default.
- W2802369897 cites W2301158262 @default.
- W2802369897 cites W2463429024 @default.
- W2802369897 cites W2510378672 @default.
- W2802369897 cites W2539315171 @default.
- W2802369897 cites W2540718148 @default.
- W2802369897 cites W2557139718 @default.
- W2802369897 cites W2919115771 @default.
- W2802369897 doi "https://doi.org/10.1109/icacsis.2017.8355047" @default.
- W2802369897 hasPublicationYear "2017" @default.
- W2802369897 type Work @default.
- W2802369897 sameAs 2802369897 @default.
- W2802369897 citedByCount "2" @default.
- W2802369897 countsByYear W28023698972022 @default.
- W2802369897 countsByYear W28023698972023 @default.
- W2802369897 crossrefType "proceedings-article" @default.
- W2802369897 hasAuthorship W2802369897A5035582649 @default.
- W2802369897 hasAuthorship W2802369897A5049612807 @default.
- W2802369897 hasAuthorship W2802369897A5059817827 @default.
- W2802369897 hasAuthorship W2802369897A5088280960 @default.
- W2802369897 hasConcept C138885662 @default.
- W2802369897 hasConcept C153180895 @default.
- W2802369897 hasConcept C154945302 @default.
- W2802369897 hasConcept C159693508 @default.
- W2802369897 hasConcept C199360897 @default.
- W2802369897 hasConcept C2776401178 @default.
- W2802369897 hasConcept C2779843651 @default.
- W2802369897 hasConcept C28490314 @default.
- W2802369897 hasConcept C41008148 @default.
- W2802369897 hasConcept C41895202 @default.
- W2802369897 hasConcept C52622490 @default.
- W2802369897 hasConcept C89600930 @default.
- W2802369897 hasConceptScore W2802369897C138885662 @default.
- W2802369897 hasConceptScore W2802369897C153180895 @default.
- W2802369897 hasConceptScore W2802369897C154945302 @default.
- W2802369897 hasConceptScore W2802369897C159693508 @default.
- W2802369897 hasConceptScore W2802369897C199360897 @default.
- W2802369897 hasConceptScore W2802369897C2776401178 @default.
- W2802369897 hasConceptScore W2802369897C2779843651 @default.
- W2802369897 hasConceptScore W2802369897C28490314 @default.
- W2802369897 hasConceptScore W2802369897C41008148 @default.
- W2802369897 hasConceptScore W2802369897C41895202 @default.
- W2802369897 hasConceptScore W2802369897C52622490 @default.
- W2802369897 hasConceptScore W2802369897C89600930 @default.
- W2802369897 hasLocation W28023698971 @default.
- W2802369897 hasOpenAccess W2802369897 @default.
- W2802369897 hasPrimaryLocation W28023698971 @default.
- W2802369897 hasRelatedWork W1571173121 @default.
- W2802369897 hasRelatedWork W2066804906 @default.
- W2802369897 hasRelatedWork W2083083343 @default.
- W2802369897 hasRelatedWork W2163299290 @default.
- W2802369897 hasRelatedWork W2184139745 @default.
- W2802369897 hasRelatedWork W2387004671 @default.
- W2802369897 hasRelatedWork W2463659687 @default.
- W2802369897 hasRelatedWork W3003241815 @default.
- W2802369897 hasRelatedWork W3191203122 @default.
- W2802369897 hasRelatedWork W4296634763 @default.
- W2802369897 isParatext "false" @default.
- W2802369897 isRetracted "false" @default.
- W2802369897 magId "2802369897" @default.
- W2802369897 workType "article" @default.