Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802392912> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2802392912 endingPage "012030" @default.
- W2802392912 startingPage "012030" @default.
- W2802392912 abstract "Essays are paramount for of assessing the academic excellence along with linking the different ideas with the ability to recall but are notably time consuming when they are assessed manually. Manual grading takes significant amount of evaluator's time and hence it is an expensive process. Automated grading if proven effective will not only reduce the time for assessment but comparing it with human scores will also make the score realistic. The project aims to develop an automated essay assessment system by use of machine learning techniques by classifying a corpus of textual entities into small number of discrete categories, corresponding to possible grades. Linear regression technique will be utilized for training the model along with making the use of various other classifications and clustering techniques. We intend to train classifiers on the training set, make it go through the downloaded dataset, and then measure performance our dataset by comparing the obtained values with the dataset values. We have implemented our model using java." @default.
- W2802392912 created "2018-05-17" @default.
- W2802392912 creator A5034751256 @default.
- W2802392912 creator A5069822574 @default.
- W2802392912 creator A5082311496 @default.
- W2802392912 creator A5084039750 @default.
- W2802392912 date "2018-04-01" @default.
- W2802392912 modified "2023-10-17" @default.
- W2802392912 title "Automated Essay Grading using Machine Learning Algorithm" @default.
- W2802392912 cites W1521626219 @default.
- W2802392912 cites W2101234009 @default.
- W2802392912 cites W2154541934 @default.
- W2802392912 cites W2158240052 @default.
- W2802392912 cites W2550761049 @default.
- W2802392912 cites W2149713688 @default.
- W2802392912 cites W3005347330 @default.
- W2802392912 doi "https://doi.org/10.1088/1742-6596/1000/1/012030" @default.
- W2802392912 hasPublicationYear "2018" @default.
- W2802392912 type Work @default.
- W2802392912 sameAs 2802392912 @default.
- W2802392912 citedByCount "21" @default.
- W2802392912 countsByYear W28023929122019 @default.
- W2802392912 countsByYear W28023929122020 @default.
- W2802392912 countsByYear W28023929122021 @default.
- W2802392912 countsByYear W28023929122022 @default.
- W2802392912 countsByYear W28023929122023 @default.
- W2802392912 crossrefType "journal-article" @default.
- W2802392912 hasAuthorship W2802392912A5034751256 @default.
- W2802392912 hasAuthorship W2802392912A5069822574 @default.
- W2802392912 hasAuthorship W2802392912A5082311496 @default.
- W2802392912 hasAuthorship W2802392912A5084039750 @default.
- W2802392912 hasBestOaLocation W28023929121 @default.
- W2802392912 hasConcept C119857082 @default.
- W2802392912 hasConcept C124101348 @default.
- W2802392912 hasConcept C127413603 @default.
- W2802392912 hasConcept C147176958 @default.
- W2802392912 hasConcept C154945302 @default.
- W2802392912 hasConcept C199360897 @default.
- W2802392912 hasConcept C204321447 @default.
- W2802392912 hasConcept C2777286243 @default.
- W2802392912 hasConcept C41008148 @default.
- W2802392912 hasConcept C548217200 @default.
- W2802392912 hasConcept C73555534 @default.
- W2802392912 hasConcept C81669768 @default.
- W2802392912 hasConcept C98045186 @default.
- W2802392912 hasConceptScore W2802392912C119857082 @default.
- W2802392912 hasConceptScore W2802392912C124101348 @default.
- W2802392912 hasConceptScore W2802392912C127413603 @default.
- W2802392912 hasConceptScore W2802392912C147176958 @default.
- W2802392912 hasConceptScore W2802392912C154945302 @default.
- W2802392912 hasConceptScore W2802392912C199360897 @default.
- W2802392912 hasConceptScore W2802392912C204321447 @default.
- W2802392912 hasConceptScore W2802392912C2777286243 @default.
- W2802392912 hasConceptScore W2802392912C41008148 @default.
- W2802392912 hasConceptScore W2802392912C548217200 @default.
- W2802392912 hasConceptScore W2802392912C73555534 @default.
- W2802392912 hasConceptScore W2802392912C81669768 @default.
- W2802392912 hasConceptScore W2802392912C98045186 @default.
- W2802392912 hasLocation W28023929121 @default.
- W2802392912 hasOpenAccess W2802392912 @default.
- W2802392912 hasPrimaryLocation W28023929121 @default.
- W2802392912 hasRelatedWork W147166030 @default.
- W2802392912 hasRelatedWork W1527340856 @default.
- W2802392912 hasRelatedWork W2120294916 @default.
- W2802392912 hasRelatedWork W2587710587 @default.
- W2802392912 hasRelatedWork W2973506316 @default.
- W2802392912 hasRelatedWork W3107474891 @default.
- W2802392912 hasRelatedWork W3154941836 @default.
- W2802392912 hasRelatedWork W4308796807 @default.
- W2802392912 hasRelatedWork W4309801476 @default.
- W2802392912 hasRelatedWork W4313444831 @default.
- W2802392912 hasVolume "1000" @default.
- W2802392912 isParatext "false" @default.
- W2802392912 isRetracted "false" @default.
- W2802392912 magId "2802392912" @default.
- W2802392912 workType "article" @default.