Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802504704> ?p ?o ?g. }
- W2802504704 endingPage "99" @default.
- W2802504704 startingPage "87" @default.
- W2802504704 abstract "Application programming interfaces (API), allowing systems to be accessed by the services they expose, have proliferated on the Internet and gained strategic interest in the IT industry. However, integration opportunities for larger, enterprise systems are hampered by complex and overloaded operations of their interfaces, having hundreds of parameters and multiple levels of nesting, corresponding to multiple business entities. Static (code) analysis techniques have been proposed to analyse service interfaces of enterprise systems. They support the derivation of business entities and relationships from the parameters of interface operations, allowing the restructure of operations, based on individual entities. In this paper, we extend the repertoire of static interface analysis to derive service variants, whereby subsets of operation parameters correspond to multiple nested business entity subtypes of variants. Specifically, we apply a Monte Carlo sampling method, based on likelihood-free Bayesian sampling, to traverse large parameter spaces, based on higher probabilistic tree search, to efficiently find subsets of parameters related to prospective subtypes. The results demonstrate a method with significant success rates in massive search spaces, as applied to the FedEx Shipment interface whose operations have in excess of 1000 parameters." @default.
- W2802504704 created "2018-05-17" @default.
- W2802504704 creator A5013510604 @default.
- W2802504704 creator A5023930442 @default.
- W2802504704 creator A5030334397 @default.
- W2802504704 date "2018-09-01" @default.
- W2802504704 modified "2023-10-16" @default.
- W2802504704 title "A likelihood-free Bayesian derivation method for service variants" @default.
- W2802504704 cites W130710483 @default.
- W2802504704 cites W1490424579 @default.
- W2802504704 cites W1496000344 @default.
- W2802504704 cites W1498269428 @default.
- W2802504704 cites W1509132747 @default.
- W2802504704 cites W1512710096 @default.
- W2802504704 cites W1563267055 @default.
- W2802504704 cites W1569013546 @default.
- W2802504704 cites W1578961802 @default.
- W2802504704 cites W1583384995 @default.
- W2802504704 cites W1603071253 @default.
- W2802504704 cites W1625390266 @default.
- W2802504704 cites W1635144368 @default.
- W2802504704 cites W1659289657 @default.
- W2802504704 cites W1790935867 @default.
- W2802504704 cites W1854458806 @default.
- W2802504704 cites W188145618 @default.
- W2802504704 cites W1937768634 @default.
- W2802504704 cites W1985093013 @default.
- W2802504704 cites W1991183254 @default.
- W2802504704 cites W2008896880 @default.
- W2802504704 cites W2011804594 @default.
- W2802504704 cites W2021418918 @default.
- W2802504704 cites W2040999237 @default.
- W2802504704 cites W2045973738 @default.
- W2802504704 cites W2046097417 @default.
- W2802504704 cites W2051668579 @default.
- W2802504704 cites W2053332694 @default.
- W2802504704 cites W2055615358 @default.
- W2802504704 cites W2056905497 @default.
- W2802504704 cites W2067392831 @default.
- W2802504704 cites W2100198805 @default.
- W2802504704 cites W2138309709 @default.
- W2802504704 cites W2139011065 @default.
- W2802504704 cites W2139756471 @default.
- W2802504704 cites W2143741513 @default.
- W2802504704 cites W2147357149 @default.
- W2802504704 cites W2151729750 @default.
- W2802504704 cites W2154702004 @default.
- W2802504704 cites W2224225953 @default.
- W2802504704 cites W2295719270 @default.
- W2802504704 cites W3144730817 @default.
- W2802504704 cites W3162313384 @default.
- W2802504704 cites W964191714 @default.
- W2802504704 cites W13161611 @default.
- W2802504704 doi "https://doi.org/10.1016/j.jss.2018.05.011" @default.
- W2802504704 hasPublicationYear "2018" @default.
- W2802504704 type Work @default.
- W2802504704 sameAs 2802504704 @default.
- W2802504704 citedByCount "1" @default.
- W2802504704 countsByYear W28025047042020 @default.
- W2802504704 crossrefType "journal-article" @default.
- W2802504704 hasAuthorship W2802504704A5013510604 @default.
- W2802504704 hasAuthorship W2802504704A5023930442 @default.
- W2802504704 hasAuthorship W2802504704A5030334397 @default.
- W2802504704 hasBestOaLocation W28025047042 @default.
- W2802504704 hasConcept C10138342 @default.
- W2802504704 hasConcept C107673813 @default.
- W2802504704 hasConcept C110875604 @default.
- W2802504704 hasConcept C113843644 @default.
- W2802504704 hasConcept C124101348 @default.
- W2802504704 hasConcept C127413603 @default.
- W2802504704 hasConcept C129307140 @default.
- W2802504704 hasConcept C13280743 @default.
- W2802504704 hasConcept C136264566 @default.
- W2802504704 hasConcept C136764020 @default.
- W2802504704 hasConcept C154945302 @default.
- W2802504704 hasConcept C157915830 @default.
- W2802504704 hasConcept C162324750 @default.
- W2802504704 hasConcept C173608175 @default.
- W2802504704 hasConcept C176809094 @default.
- W2802504704 hasConcept C205649164 @default.
- W2802504704 hasConcept C2776937656 @default.
- W2802504704 hasConcept C2780378061 @default.
- W2802504704 hasConcept C41008148 @default.
- W2802504704 hasConcept C45237549 @default.
- W2802504704 hasConcept C49937458 @default.
- W2802504704 hasConcept C78519656 @default.
- W2802504704 hasConcept C80444323 @default.
- W2802504704 hasConceptScore W2802504704C10138342 @default.
- W2802504704 hasConceptScore W2802504704C107673813 @default.
- W2802504704 hasConceptScore W2802504704C110875604 @default.
- W2802504704 hasConceptScore W2802504704C113843644 @default.
- W2802504704 hasConceptScore W2802504704C124101348 @default.
- W2802504704 hasConceptScore W2802504704C127413603 @default.
- W2802504704 hasConceptScore W2802504704C129307140 @default.
- W2802504704 hasConceptScore W2802504704C13280743 @default.
- W2802504704 hasConceptScore W2802504704C136264566 @default.
- W2802504704 hasConceptScore W2802504704C136764020 @default.
- W2802504704 hasConceptScore W2802504704C154945302 @default.