Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802532024> ?p ?o ?g. }
- W2802532024 endingPage "1995" @default.
- W2802532024 startingPage "1975" @default.
- W2802532024 abstract "Abstract Multivariate autoregressive (MAR) models are an increasingly popular technique to infer interaction strengths between species in a community and to predict the community response to environmental change. The most commonly employed MAR(1) models, with one time lag, can be viewed either as multispecies competition models with Gompertz density dependence or, more generally, as a linear approximation of more complex, nonlinear dynamics around stable equilibria. This latter interpretation allows for broader applicability, but may come at a cost in terms of interpretation of estimates and reliability of both short‐ and long‐term predictions. We investigate what these costs might be by fitting MAR(1) models to simulated 2‐species competition, consumer‐resource and host–parasitoid systems, as well as a larger food web influenced by the environment. We review how MAR(1) coefficients can be interpreted and evaluate how reliable are estimates of interaction strength, rank, or sign; accuracy of short‐term forecasts; as well as the ability of MAR(1) models to predict the long‐term responses of communities submitted to environmental change such as PRESS perturbations. The net effects of species j on species i are usually (90%‐95%) well recovered in terms of sign or rank, with the notable exception of overcompensatory dynamics. In actual values, net effects of species j on species i are not well recovered when the underlying dynamics are nonlinear. MAR(1) models are better at making short‐term qualitative forecasts (next point going up or down) than at predicting long‐term responses to environmental perturbations, which can be severely over‐ as well as underestimated. We conclude that when applying MAR(1) models to ecological data, inferences on net effects among species should be limited to signs, or the Gompertz assumption should be tested and discussed. This particular assumption on density‐dependence (log‐linearity) is also required for unbiased long‐term predictions. Overall, we think that MAR(1) models are highly useful tools to resolve and characterize community dynamics, but we recommend to use them in conjunction with alternative, nonlinear models resembling the ecological context in order to improve their interpretation in specific applications." @default.
- W2802532024 created "2018-05-17" @default.
- W2802532024 creator A5036451788 @default.
- W2802532024 creator A5070876634 @default.
- W2802532024 creator A5080673124 @default.
- W2802532024 date "2018-05-25" @default.
- W2802532024 modified "2023-10-16" @default.
- W2802532024 title "How do MAR(1) models cope with hidden nonlinearities in ecological dynamics?" @default.
- W2802532024 cites W1884954933 @default.
- W2802532024 cites W1971971946 @default.
- W2802532024 cites W1973410329 @default.
- W2802532024 cites W1979352379 @default.
- W2802532024 cites W1981515992 @default.
- W2802532024 cites W1982363149 @default.
- W2802532024 cites W1991799868 @default.
- W2802532024 cites W2016210396 @default.
- W2802532024 cites W2017069147 @default.
- W2802532024 cites W2019459021 @default.
- W2802532024 cites W2020245429 @default.
- W2802532024 cites W2034112003 @default.
- W2802532024 cites W2039459999 @default.
- W2802532024 cites W2040199098 @default.
- W2802532024 cites W2043137741 @default.
- W2802532024 cites W2047831247 @default.
- W2802532024 cites W2051701238 @default.
- W2802532024 cites W2054328433 @default.
- W2802532024 cites W2054417955 @default.
- W2802532024 cites W2063739015 @default.
- W2802532024 cites W2071216578 @default.
- W2802532024 cites W2074051766 @default.
- W2802532024 cites W2078206559 @default.
- W2802532024 cites W2082296409 @default.
- W2802532024 cites W2083278075 @default.
- W2802532024 cites W2083519365 @default.
- W2802532024 cites W2083680853 @default.
- W2802532024 cites W2087535060 @default.
- W2802532024 cites W2088303408 @default.
- W2802532024 cites W2109832751 @default.
- W2802532024 cites W2119204307 @default.
- W2802532024 cites W2120041700 @default.
- W2802532024 cites W2120328777 @default.
- W2802532024 cites W2123878749 @default.
- W2802532024 cites W2124104310 @default.
- W2802532024 cites W2126123219 @default.
- W2802532024 cites W2127565131 @default.
- W2802532024 cites W2130027567 @default.
- W2802532024 cites W2132860132 @default.
- W2802532024 cites W2136984506 @default.
- W2802532024 cites W2141907517 @default.
- W2802532024 cites W2143566537 @default.
- W2802532024 cites W2144395282 @default.
- W2802532024 cites W2149049530 @default.
- W2802532024 cites W2152030408 @default.
- W2802532024 cites W2153235338 @default.
- W2802532024 cites W2158084754 @default.
- W2802532024 cites W2162433761 @default.
- W2802532024 cites W2163744424 @default.
- W2802532024 cites W2164791658 @default.
- W2802532024 cites W2168541903 @default.
- W2802532024 cites W2170460183 @default.
- W2802532024 cites W2178225550 @default.
- W2802532024 cites W2262133047 @default.
- W2802532024 cites W2319291298 @default.
- W2802532024 cites W2337888439 @default.
- W2802532024 cites W2614665773 @default.
- W2802532024 cites W2619821824 @default.
- W2802532024 cites W2947626232 @default.
- W2802532024 cites W3098625064 @default.
- W2802532024 cites W3105322001 @default.
- W2802532024 cites W4298084067 @default.
- W2802532024 doi "https://doi.org/10.1111/2041-210x.13021" @default.
- W2802532024 hasPublicationYear "2018" @default.
- W2802532024 type Work @default.
- W2802532024 sameAs 2802532024 @default.
- W2802532024 citedByCount "18" @default.
- W2802532024 countsByYear W28025320242018 @default.
- W2802532024 countsByYear W28025320242019 @default.
- W2802532024 countsByYear W28025320242020 @default.
- W2802532024 countsByYear W28025320242021 @default.
- W2802532024 countsByYear W28025320242022 @default.
- W2802532024 countsByYear W28025320242023 @default.
- W2802532024 crossrefType "journal-article" @default.
- W2802532024 hasAuthorship W2802532024A5036451788 @default.
- W2802532024 hasAuthorship W2802532024A5070876634 @default.
- W2802532024 hasAuthorship W2802532024A5080673124 @default.
- W2802532024 hasBestOaLocation W28025320241 @default.
- W2802532024 hasConcept C105795698 @default.
- W2802532024 hasConcept C121332964 @default.
- W2802532024 hasConcept C134463574 @default.
- W2802532024 hasConcept C149782125 @default.
- W2802532024 hasConcept C158622935 @default.
- W2802532024 hasConcept C159877910 @default.
- W2802532024 hasConcept C161584116 @default.
- W2802532024 hasConcept C18903297 @default.
- W2802532024 hasConcept C31258907 @default.
- W2802532024 hasConcept C33923547 @default.
- W2802532024 hasConcept C41008148 @default.
- W2802532024 hasConcept C61797465 @default.