Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802575518> ?p ?o ?g. }
- W2802575518 endingPage "e232" @default.
- W2802575518 startingPage "e223" @default.
- W2802575518 abstract "BackgroundLeptospirosis is a globally important zoonotic disease, with complex exposure pathways that depend on interactions between human beings, animals, and the environment. Major drivers of outbreaks include flooding, urbanisation, poverty, and agricultural intensification. The intensity of these drivers and their relative importance vary between geographical areas; however, non-spatial regression methods are incapable of capturing the spatial variations. This study aimed to explore the use of geographically weighted logistic regression (GWLR) to provide insights into the ecoepidemiology of human leptospirosis in Fiji.MethodsWe obtained field data from a cross-sectional community survey done in 2013 in the three main islands of Fiji. A blood sample obtained from each participant (aged 1–90 years) was tested for anti-Leptospira antibodies and household locations were recorded using GPS receivers. We used GWLR to quantify the spatial variation in the relative importance of five environmental and sociodemographic covariates (cattle density, distance to river, poverty rate, residential setting [urban or rural], and maximum rainfall in the wettest month) on leptospirosis transmission in Fiji. We developed two models, one using GWLR and one with standard logistic regression; for each model, the dependent variable was the presence or absence of anti-Leptospira antibodies. GWLR results were compared with results obtained with standard logistic regression, and used to produce a predictive risk map and maps showing the spatial variation in odds ratios (OR) for each covariate.FindingsThe dataset contained location information for 2046 participants from 1922 households representing 81 communities. The Aikaike information criterion value of the GWLR model was 1935·2 compared with 1254·2 for the standard logistic regression model, indicating that the GWLR model was more efficient. Both models produced similar OR for the covariates, but GWLR also detected spatial variation in the effect of each covariate. Maximum rainfall had the least variation across space (median OR 1·30, IQR 1·27–1·35), and distance to river varied the most (1·45, 1·35–2·05). The predictive risk map indicated that the highest risk was in the interior of Viti Levu, and the agricultural region and southern end of Vanua Levu.InterpretationGWLR provided a valuable method for modelling spatial heterogeneity of covariates for leptospirosis infection and their relative importance over space. Results of GWLR could be used to inform more place-specific interventions, particularly for diseases with strong environmental or sociodemographic drivers of transmission.FundingWHO, Australian National Health & Medical Research Council, University of Queensland, UK Medical Research Council, Chadwick Trust." @default.
- W2802575518 created "2018-05-17" @default.
- W2802575518 creator A5031352764 @default.
- W2802575518 creator A5033763320 @default.
- W2802575518 creator A5034599786 @default.
- W2802575518 creator A5036378102 @default.
- W2802575518 creator A5052252281 @default.
- W2802575518 creator A5072986205 @default.
- W2802575518 date "2018-05-01" @default.
- W2802575518 modified "2023-10-16" @default.
- W2802575518 title "Use of geographically weighted logistic regression to quantify spatial variation in the environmental and sociodemographic drivers of leptospirosis in Fiji: a modelling study" @default.
- W2802575518 cites W1948094720 @default.
- W2802575518 cites W1971820573 @default.
- W2802575518 cites W2005795561 @default.
- W2802575518 cites W2009974606 @default.
- W2802575518 cites W2013895308 @default.
- W2802575518 cites W2015885089 @default.
- W2802575518 cites W2033517019 @default.
- W2802575518 cites W2040775217 @default.
- W2802575518 cites W2043684867 @default.
- W2802575518 cites W2045066934 @default.
- W2802575518 cites W2047120335 @default.
- W2802575518 cites W2110454331 @default.
- W2802575518 cites W2131586477 @default.
- W2802575518 cites W2144728133 @default.
- W2802575518 cites W2147279463 @default.
- W2802575518 cites W2149033066 @default.
- W2802575518 cites W2157801459 @default.
- W2802575518 cites W2160431382 @default.
- W2802575518 cites W2252925073 @default.
- W2802575518 cites W2550671650 @default.
- W2802575518 cites W2557578032 @default.
- W2802575518 doi "https://doi.org/10.1016/s2542-5196(18)30066-4" @default.
- W2802575518 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5924768" @default.
- W2802575518 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29709286" @default.
- W2802575518 hasPublicationYear "2018" @default.
- W2802575518 type Work @default.
- W2802575518 sameAs 2802575518 @default.
- W2802575518 citedByCount "39" @default.
- W2802575518 countsByYear W28025755182018 @default.
- W2802575518 countsByYear W28025755182019 @default.
- W2802575518 countsByYear W28025755182020 @default.
- W2802575518 countsByYear W28025755182021 @default.
- W2802575518 countsByYear W28025755182022 @default.
- W2802575518 countsByYear W28025755182023 @default.
- W2802575518 crossrefType "journal-article" @default.
- W2802575518 hasAuthorship W2802575518A5031352764 @default.
- W2802575518 hasAuthorship W2802575518A5033763320 @default.
- W2802575518 hasAuthorship W2802575518A5034599786 @default.
- W2802575518 hasAuthorship W2802575518A5036378102 @default.
- W2802575518 hasAuthorship W2802575518A5052252281 @default.
- W2802575518 hasAuthorship W2802575518A5072986205 @default.
- W2802575518 hasBestOaLocation W28025755181 @default.
- W2802575518 hasConcept C105795698 @default.
- W2802575518 hasConcept C119043178 @default.
- W2802575518 hasConcept C143095724 @default.
- W2802575518 hasConcept C144024400 @default.
- W2802575518 hasConcept C149923435 @default.
- W2802575518 hasConcept C151956035 @default.
- W2802575518 hasConcept C152877465 @default.
- W2802575518 hasConcept C159620131 @default.
- W2802575518 hasConcept C205649164 @default.
- W2802575518 hasConcept C2778033228 @default.
- W2802575518 hasConcept C33923547 @default.
- W2802575518 hasConcept C42972112 @default.
- W2802575518 hasConcept C62649853 @default.
- W2802575518 hasConcept C71924100 @default.
- W2802575518 hasConceptScore W2802575518C105795698 @default.
- W2802575518 hasConceptScore W2802575518C119043178 @default.
- W2802575518 hasConceptScore W2802575518C143095724 @default.
- W2802575518 hasConceptScore W2802575518C144024400 @default.
- W2802575518 hasConceptScore W2802575518C149923435 @default.
- W2802575518 hasConceptScore W2802575518C151956035 @default.
- W2802575518 hasConceptScore W2802575518C152877465 @default.
- W2802575518 hasConceptScore W2802575518C159620131 @default.
- W2802575518 hasConceptScore W2802575518C205649164 @default.
- W2802575518 hasConceptScore W2802575518C2778033228 @default.
- W2802575518 hasConceptScore W2802575518C33923547 @default.
- W2802575518 hasConceptScore W2802575518C42972112 @default.
- W2802575518 hasConceptScore W2802575518C62649853 @default.
- W2802575518 hasConceptScore W2802575518C71924100 @default.
- W2802575518 hasIssue "5" @default.
- W2802575518 hasLocation W28025755181 @default.
- W2802575518 hasLocation W28025755182 @default.
- W2802575518 hasLocation W28025755183 @default.
- W2802575518 hasLocation W28025755184 @default.
- W2802575518 hasLocation W28025755185 @default.
- W2802575518 hasLocation W28025755186 @default.
- W2802575518 hasLocation W28025755187 @default.
- W2802575518 hasOpenAccess W2802575518 @default.
- W2802575518 hasPrimaryLocation W28025755181 @default.
- W2802575518 hasRelatedWork W2036172755 @default.
- W2802575518 hasRelatedWork W2098912119 @default.
- W2802575518 hasRelatedWork W2190249206 @default.
- W2802575518 hasRelatedWork W2336113172 @default.
- W2802575518 hasRelatedWork W2377500394 @default.
- W2802575518 hasRelatedWork W2415557774 @default.
- W2802575518 hasRelatedWork W2417842367 @default.