Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802618466> ?p ?o ?g. }
- W2802618466 endingPage "339" @default.
- W2802618466 startingPage "327" @default.
- W2802618466 abstract "Neuro-axonal injury is a key contributor to non-reversible long-term disability in multiple sclerosis (MS). However, the underlying mechanisms are not yet fully understood. Visual impairment is common among MS patients, in which episodes of optic neuritis (ON) are often followed by structural retinal damage and sustained functional impairment. Alterations in the optic nerve and retina have also been described in experimental autoimmune encephalomyelitis (EAE), a rodent model of MS. Thus, investigating structural anterior visual pathway damage may constitute a unique model for assessing mechanisms and temporal sequence of neurodegeneration in MS. We used a multimodal imaging approach utilizing optical coherence tomography (OCT) and diffusion tensor imaging (DTI) to explore the mechanisms and temporal dynamics of visual pathway damage in the animal model of MS. 7 EAE-MOG35-55 and 5 healthy female C57BL/6J mice were used in this study. Ganglion cell complex (GCC) thickness was derived from an OCT volume scan centred over the optic nerve head, while the structure of the optic nerve and tracts was assessed from DTI and co-registered T2-weighted sequences performed on a 7T MRI scanner. Data was acquired at baseline, disease onset, peak of disease and recovery. Linear mixed effect models were used to account for intra-subject, inter-eye dependencies, group and time point. Correlation analyses assessed the relationship between GCC thickness and DTI parameters. Immunofluorescence staining of retina and optic nerve sections was used to assess distribution of marker proteins for microglia and neurodegeneration (nerve filaments). In EAE mice, a significant increase in GCC thickness was observed at disease onset (p < 0.001) followed by a decrease at recovery (p < 0.001) compared to controls. The EAE group had significant GCC thinning at recovery compared to all other time points (p < 0.001 for each). Signal increase on T2-weighted images around the optic nerves indicative of inflammation was seen in most of the EAE mice but in none of the controls. A significant decrease in axial diffusivity (AD) and increase in radial diffusivity (RD) values in EAE optic nerves (AD: p = 0.02, RD: p = 0.01) and tract (AD: p = 0.02, RD: p = 0.006) was observed compared to controls. GCC at recovery was positively correlated with AD (optic nerve: rho = 0.74, p = 0.04, optic tract: rho = 0.74, p = 0.04) and negatively correlated with RD (optic nerve: rho = −0.80, p = 0.02, optic tract: rho = −0.75, p = 0.04). Immunofluorescence analysis indicated the presence of activated microglia in the retina and optic nerves in addition to astrocytosis and axonal degeneration in the optic nerve of EAE mice. OCT detected GCC changes in EAE may resemble what is observed in MS-related acute ON: an initial phase of swelling (indicative of inflammatory edema) followed by a decrease in thickness over time (representative of neuro-axonal degeneration). In line with OCT findings, DTI of the visual pathway identifies EAE induced pathology (decreased AD, and increased RD). Immunofluorescence analysis provides support for inflammatory pathology and axonal degeneration. OCT together with DTI can detect retinal and optic nerve damage and elucidate to the temporal sequence of neurodegeneration in this rodent model of MS in vivo." @default.
- W2802618466 created "2018-05-17" @default.
- W2802618466 creator A5004628461 @default.
- W2802618466 creator A5027917051 @default.
- W2802618466 creator A5048109297 @default.
- W2802618466 creator A5048371879 @default.
- W2802618466 creator A5050542052 @default.
- W2802618466 creator A5058709151 @default.
- W2802618466 creator A5071972650 @default.
- W2802618466 date "2018-07-01" @default.
- W2802618466 modified "2023-10-18" @default.
- W2802618466 title "Exploring experimental autoimmune optic neuritis using multimodal imaging" @default.
- W2802618466 cites W1504492140 @default.
- W2802618466 cites W1523338791 @default.
- W2802618466 cites W1828579964 @default.
- W2802618466 cites W1955700682 @default.
- W2802618466 cites W1975731265 @default.
- W2802618466 cites W1976491437 @default.
- W2802618466 cites W1976987174 @default.
- W2802618466 cites W1977257783 @default.
- W2802618466 cites W1986913568 @default.
- W2802618466 cites W1991572995 @default.
- W2802618466 cites W1992473488 @default.
- W2802618466 cites W1992825267 @default.
- W2802618466 cites W1998183942 @default.
- W2802618466 cites W1998770539 @default.
- W2802618466 cites W2007853444 @default.
- W2802618466 cites W2011888439 @default.
- W2802618466 cites W2012309360 @default.
- W2802618466 cites W2012637873 @default.
- W2802618466 cites W2018681635 @default.
- W2802618466 cites W2027270401 @default.
- W2802618466 cites W2047008240 @default.
- W2802618466 cites W2047410266 @default.
- W2802618466 cites W2048308751 @default.
- W2802618466 cites W2049223989 @default.
- W2802618466 cites W2051274614 @default.
- W2802618466 cites W2052843083 @default.
- W2802618466 cites W2058669152 @default.
- W2802618466 cites W2058901621 @default.
- W2802618466 cites W2063001897 @default.
- W2802618466 cites W2070453725 @default.
- W2802618466 cites W2075293588 @default.
- W2802618466 cites W2083672927 @default.
- W2802618466 cites W2084111299 @default.
- W2802618466 cites W2086053219 @default.
- W2802618466 cites W2089416663 @default.
- W2802618466 cites W2091335586 @default.
- W2802618466 cites W2092631976 @default.
- W2802618466 cites W2104301336 @default.
- W2802618466 cites W2107604806 @default.
- W2802618466 cites W2115404493 @default.
- W2802618466 cites W2131307089 @default.
- W2802618466 cites W2131435235 @default.
- W2802618466 cites W2144665769 @default.
- W2802618466 cites W2145991202 @default.
- W2802618466 cites W2149717906 @default.
- W2802618466 cites W2150727535 @default.
- W2802618466 cites W2160935383 @default.
- W2802618466 cites W2171753008 @default.
- W2802618466 cites W2335534790 @default.
- W2802618466 cites W2399400908 @default.
- W2802618466 cites W2465147644 @default.
- W2802618466 cites W2554521349 @default.
- W2802618466 cites W2557324930 @default.
- W2802618466 cites W2564180203 @default.
- W2802618466 cites W2566558372 @default.
- W2802618466 cites W2581320727 @default.
- W2802618466 cites W2605355737 @default.
- W2802618466 cites W2623512352 @default.
- W2802618466 cites W4211254511 @default.
- W2802618466 cites W2572664042 @default.
- W2802618466 doi "https://doi.org/10.1016/j.neuroimage.2018.04.004" @default.
- W2802618466 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29627590" @default.
- W2802618466 hasPublicationYear "2018" @default.
- W2802618466 type Work @default.
- W2802618466 sameAs 2802618466 @default.
- W2802618466 citedByCount "15" @default.
- W2802618466 countsByYear W28026184662019 @default.
- W2802618466 countsByYear W28026184662020 @default.
- W2802618466 countsByYear W28026184662021 @default.
- W2802618466 countsByYear W28026184662022 @default.
- W2802618466 crossrefType "journal-article" @default.
- W2802618466 hasAuthorship W2802618466A5004628461 @default.
- W2802618466 hasAuthorship W2802618466A5027917051 @default.
- W2802618466 hasAuthorship W2802618466A5048109297 @default.
- W2802618466 hasAuthorship W2802618466A5048371879 @default.
- W2802618466 hasAuthorship W2802618466A5050542052 @default.
- W2802618466 hasAuthorship W2802618466A5058709151 @default.
- W2802618466 hasAuthorship W2802618466A5071972650 @default.
- W2802618466 hasBestOaLocation W28026184661 @default.
- W2802618466 hasConcept C118487528 @default.
- W2802618466 hasConcept C126838900 @default.
- W2802618466 hasConcept C142724271 @default.
- W2802618466 hasConcept C143409427 @default.
- W2802618466 hasConcept C149550507 @default.
- W2802618466 hasConcept C15744967 @default.
- W2802618466 hasConcept C169760540 @default.