Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802665251> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2802665251 endingPage "218" @default.
- W2802665251 startingPage "206" @default.
- W2802665251 abstract "One of the important applications of non-invasive respiration monitoring using ECG signal is the detection of obstructive sleep apnea (OSA). ECG-derived respiratory (EDR) signals, contribute to useful information about apnea occurrence. In this paper, two EDR extraction methods are proposed, and their application in automatic OSA detection using single-lead ECG is investigated. EDR signals are extracted based on new respiration-related features in ECG beats morphology, such as ECG variance (EDRVar) and phase space reconstruction area (EDRPSR). After evaluating the EDRs by comparing them to a reference respiratory signal, they are used in an automatic OSA detection application. Fantasia and Apnea-ECG database from PhysioNet are used for EDRs assessments and OSA detection, respectively. The final performance of our OSA detection is tested on an independent test data which is also compared with results of other techniques in the literature. The extracted EDRs, EDRVar and EDRPSR show correlations of 72% and 70% with reference respiration, which outperform the other state-of-the-art EDR methods. After feature extraction from EDRs and RR intervals series, the combination of RR and EDRPSR feature sets achieved 100% accuracy in subject-based apnea detection on independent test data, and also minute-based apnea detection is done with accuracy, sensitivity and specificity of 90.9%, 89.6% and 91.8%, which is better than other automatic algorithms in the literature. Our OSA detection system using EDRs features yields better independent test results compared with other state-of-the-art automatic apnea detection methods. The results indicate that ECG-based OSA detection system can classify OSA events with high accuracy and suggest a promising, non-invasive and efficient method for apnea detection." @default.
- W2802665251 created "2018-05-17" @default.
- W2802665251 creator A5021460534 @default.
- W2802665251 creator A5059101598 @default.
- W2802665251 date "2018-06-01" @default.
- W2802665251 modified "2023-10-14" @default.
- W2802665251 title "Sleep Apnea Detection from Single-Lead ECG Using Features Based on ECG-Derived Respiration (EDR) Signals" @default.
- W2802665251 cites W1976172310 @default.
- W2802665251 cites W1979165199 @default.
- W2802665251 cites W2021717932 @default.
- W2802665251 cites W2022781870 @default.
- W2802665251 cites W2028850797 @default.
- W2802665251 cites W2072888391 @default.
- W2802665251 cites W2087978863 @default.
- W2802665251 cites W2090719600 @default.
- W2802665251 cites W2101618562 @default.
- W2802665251 cites W2106336403 @default.
- W2802665251 cites W2141040858 @default.
- W2802665251 cites W2151317568 @default.
- W2802665251 cites W2155758218 @default.
- W2802665251 cites W2162273778 @default.
- W2802665251 cites W2162800060 @default.
- W2802665251 cites W2264784497 @default.
- W2802665251 cites W2277546892 @default.
- W2802665251 cites W2343482910 @default.
- W2802665251 cites W2471195096 @default.
- W2802665251 cites W2517389691 @default.
- W2802665251 doi "https://doi.org/10.1016/j.irbm.2018.03.002" @default.
- W2802665251 hasPublicationYear "2018" @default.
- W2802665251 type Work @default.
- W2802665251 sameAs 2802665251 @default.
- W2802665251 citedByCount "46" @default.
- W2802665251 countsByYear W28026652512018 @default.
- W2802665251 countsByYear W28026652512019 @default.
- W2802665251 countsByYear W28026652512020 @default.
- W2802665251 countsByYear W28026652512021 @default.
- W2802665251 countsByYear W28026652512022 @default.
- W2802665251 countsByYear W28026652512023 @default.
- W2802665251 crossrefType "journal-article" @default.
- W2802665251 hasAuthorship W2802665251A5021460534 @default.
- W2802665251 hasAuthorship W2802665251A5059101598 @default.
- W2802665251 hasConcept C126322002 @default.
- W2802665251 hasConcept C153180895 @default.
- W2802665251 hasConcept C154945302 @default.
- W2802665251 hasConcept C2777935920 @default.
- W2802665251 hasConcept C2781326671 @default.
- W2802665251 hasConcept C41008148 @default.
- W2802665251 hasConcept C52622490 @default.
- W2802665251 hasConcept C71924100 @default.
- W2802665251 hasConceptScore W2802665251C126322002 @default.
- W2802665251 hasConceptScore W2802665251C153180895 @default.
- W2802665251 hasConceptScore W2802665251C154945302 @default.
- W2802665251 hasConceptScore W2802665251C2777935920 @default.
- W2802665251 hasConceptScore W2802665251C2781326671 @default.
- W2802665251 hasConceptScore W2802665251C41008148 @default.
- W2802665251 hasConceptScore W2802665251C52622490 @default.
- W2802665251 hasConceptScore W2802665251C71924100 @default.
- W2802665251 hasIssue "3" @default.
- W2802665251 hasLocation W28026652511 @default.
- W2802665251 hasOpenAccess W2802665251 @default.
- W2802665251 hasPrimaryLocation W28026652511 @default.
- W2802665251 hasRelatedWork W1964120219 @default.
- W2802665251 hasRelatedWork W2000165426 @default.
- W2802665251 hasRelatedWork W2136054869 @default.
- W2802665251 hasRelatedWork W2144059113 @default.
- W2802665251 hasRelatedWork W2146076056 @default.
- W2802665251 hasRelatedWork W2385132419 @default.
- W2802665251 hasRelatedWork W2772780115 @default.
- W2802665251 hasRelatedWork W2811390910 @default.
- W2802665251 hasRelatedWork W3003836766 @default.
- W2802665251 hasRelatedWork W2131683651 @default.
- W2802665251 hasVolume "39" @default.
- W2802665251 isParatext "false" @default.
- W2802665251 isRetracted "false" @default.
- W2802665251 magId "2802665251" @default.
- W2802665251 workType "article" @default.