Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802673255> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2802673255 endingPage "204" @default.
- W2802673255 startingPage "193" @default.
- W2802673255 abstract "As the rise of the portable devices, people usually access the social media such as Twitter and Facebook through wireless networks. Therefore, data transmission rates significant important to the end users. In this work, we discuss the problem of context-aware data caching in the heterogeneous small cell networks to reduce the service delay and how the device-to-device (D2D) and device-to-infrastructure (D2I) improve the system social welfare. In the data-caching model, we explore three types of cache entities, macro cell base stations, small cell base stations, and end user devices. We propose a long short-term memory (LSTM) deep learning model to perform data analysis and extract information content from the data. By knowing the interest of the data to the cache entities, we can cache the data that will most likely to be requested by the end users to reduce service latency. In simulation, we show our proposed algorithm can efficiently reduce the service latency during 2016 U.S. presidential election where mobile user were urgent to request the election information through wireless networks. Comparing with other mechanisms such as using one-to-many matching algorithm or without D2D communication technology, our proposed algorithm improves significantly on the devices performance and system social welfare." @default.
- W2802673255 created "2018-05-17" @default.
- W2802673255 creator A5012278873 @default.
- W2802673255 creator A5063667378 @default.
- W2802673255 creator A5090033778 @default.
- W2802673255 date "2020-01-01" @default.
- W2802673255 modified "2023-10-18" @default.
- W2802673255 title "Caching for Mobile Social Networks with Deep Learning: Twitter Analysis for 2016 U.S. Election" @default.
- W2802673255 cites W1555291764 @default.
- W2802673255 cites W1899504021 @default.
- W2802673255 cites W1960633731 @default.
- W2802673255 cites W1969611313 @default.
- W2802673255 cites W2051773775 @default.
- W2802673255 cites W2054692642 @default.
- W2802673255 cites W2064675550 @default.
- W2802673255 cites W2067624665 @default.
- W2802673255 cites W2072912047 @default.
- W2802673255 cites W2107878631 @default.
- W2802673255 cites W2114524997 @default.
- W2802673255 cites W2136848157 @default.
- W2802673255 cites W2143480972 @default.
- W2802673255 cites W2144499799 @default.
- W2802673255 cites W2298645458 @default.
- W2802673255 cites W2321601466 @default.
- W2802673255 cites W2477538127 @default.
- W2802673255 cites W2509595235 @default.
- W2802673255 cites W2513662117 @default.
- W2802673255 cites W2516839461 @default.
- W2802673255 cites W2531824516 @default.
- W2802673255 cites W2542096495 @default.
- W2802673255 cites W2585616107 @default.
- W2802673255 cites W2597068831 @default.
- W2802673255 cites W2616757124 @default.
- W2802673255 cites W2760893072 @default.
- W2802673255 cites W2762605243 @default.
- W2802673255 cites W2963372384 @default.
- W2802673255 cites W3099070819 @default.
- W2802673255 cites W4243888862 @default.
- W2802673255 doi "https://doi.org/10.1109/tnse.2018.2832075" @default.
- W2802673255 hasPublicationYear "2020" @default.
- W2802673255 type Work @default.
- W2802673255 sameAs 2802673255 @default.
- W2802673255 citedByCount "20" @default.
- W2802673255 countsByYear W28026732552018 @default.
- W2802673255 countsByYear W28026732552019 @default.
- W2802673255 countsByYear W28026732552020 @default.
- W2802673255 countsByYear W28026732552021 @default.
- W2802673255 countsByYear W28026732552022 @default.
- W2802673255 crossrefType "journal-article" @default.
- W2802673255 hasAuthorship W2802673255A5012278873 @default.
- W2802673255 hasAuthorship W2802673255A5063667378 @default.
- W2802673255 hasAuthorship W2802673255A5090033778 @default.
- W2802673255 hasBestOaLocation W28026732551 @default.
- W2802673255 hasConcept C115537543 @default.
- W2802673255 hasConcept C136764020 @default.
- W2802673255 hasConcept C186967261 @default.
- W2802673255 hasConcept C31258907 @default.
- W2802673255 hasConcept C41008148 @default.
- W2802673255 hasConcept C68649174 @default.
- W2802673255 hasConcept C76155785 @default.
- W2802673255 hasConcept C82876162 @default.
- W2802673255 hasConceptScore W2802673255C115537543 @default.
- W2802673255 hasConceptScore W2802673255C136764020 @default.
- W2802673255 hasConceptScore W2802673255C186967261 @default.
- W2802673255 hasConceptScore W2802673255C31258907 @default.
- W2802673255 hasConceptScore W2802673255C41008148 @default.
- W2802673255 hasConceptScore W2802673255C68649174 @default.
- W2802673255 hasConceptScore W2802673255C76155785 @default.
- W2802673255 hasConceptScore W2802673255C82876162 @default.
- W2802673255 hasFunder F4320306076 @default.
- W2802673255 hasFunder F4320321001 @default.
- W2802673255 hasIssue "1" @default.
- W2802673255 hasLocation W28026732551 @default.
- W2802673255 hasOpenAccess W2802673255 @default.
- W2802673255 hasPrimaryLocation W28026732551 @default.
- W2802673255 hasRelatedWork W1819546284 @default.
- W2802673255 hasRelatedWork W1984163603 @default.
- W2802673255 hasRelatedWork W2018648706 @default.
- W2802673255 hasRelatedWork W2113597336 @default.
- W2802673255 hasRelatedWork W2114232034 @default.
- W2802673255 hasRelatedWork W2152099439 @default.
- W2802673255 hasRelatedWork W2155505549 @default.
- W2802673255 hasRelatedWork W2357479218 @default.
- W2802673255 hasRelatedWork W2500106866 @default.
- W2802673255 hasRelatedWork W3034529322 @default.
- W2802673255 hasVolume "7" @default.
- W2802673255 isParatext "false" @default.
- W2802673255 isRetracted "false" @default.
- W2802673255 magId "2802673255" @default.
- W2802673255 workType "article" @default.