Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802727768> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2802727768 abstract "The rapid rise of IoT and Big Data can facilitate the use of data to enhance our quality of life. However, the omnipresent and sensitive nature of data can simultaneously generate privacy concerns. Hence, there is a strong need to develop techniques that ensure the data serve the intended purposes, but not for prying into one's sensitive information. We address this challenge via utility maximizing lossy compression of data. Our techniques combine the mathematical rigor of Kernel Learning models with the structural richness of Deep Neural Networks, and lead to the novel Multi-Kernel Learning and Hybrid Learning models. We systematically construct the proposed models in progressive stages, as motivated by the cumulative improvement in the experimental results from the two previously non-intersecting regimes, namely, Kernel Learning and Deep Neural Networks. The final experimental results of the three proposed models on three mobile sensing datasets show that, not only are our methods able to improve the utility prediction accuracies, but they can also cause sensitive predictions to perform nearly as bad as random guessing, resulting in a win-win situation in terms of utility and privacy." @default.
- W2802727768 created "2018-05-17" @default.
- W2802727768 creator A5001479022 @default.
- W2802727768 creator A5007869327 @default.
- W2802727768 creator A5066716180 @default.
- W2802727768 date "2018-04-01" @default.
- W2802727768 modified "2023-10-14" @default.
- W2802727768 title "Multi-Kernel, Deep Neural Network and Hybrid Models for Privacy Preserving Machine Learning" @default.
- W2802727768 cites W2014480560 @default.
- W2802727768 cites W2017634428 @default.
- W2802727768 cites W2065076704 @default.
- W2802727768 cites W2100495367 @default.
- W2802727768 cites W2140596092 @default.
- W2802727768 cites W2160553465 @default.
- W2802727768 cites W2509042760 @default.
- W2802727768 cites W2577492210 @default.
- W2802727768 cites W2733464274 @default.
- W2802727768 cites W2735925300 @default.
- W2802727768 cites W2771885995 @default.
- W2802727768 cites W4361868421 @default.
- W2802727768 cites W576428146 @default.
- W2802727768 doi "https://doi.org/10.1109/icassp.2018.8462336" @default.
- W2802727768 hasPublicationYear "2018" @default.
- W2802727768 type Work @default.
- W2802727768 sameAs 2802727768 @default.
- W2802727768 citedByCount "4" @default.
- W2802727768 countsByYear W28027277682020 @default.
- W2802727768 countsByYear W28027277682022 @default.
- W2802727768 countsByYear W28027277682023 @default.
- W2802727768 crossrefType "proceedings-article" @default.
- W2802727768 hasAuthorship W2802727768A5001479022 @default.
- W2802727768 hasAuthorship W2802727768A5007869327 @default.
- W2802727768 hasAuthorship W2802727768A5066716180 @default.
- W2802727768 hasConcept C108583219 @default.
- W2802727768 hasConcept C108827166 @default.
- W2802727768 hasConcept C114614502 @default.
- W2802727768 hasConcept C119857082 @default.
- W2802727768 hasConcept C123201435 @default.
- W2802727768 hasConcept C124101348 @default.
- W2802727768 hasConcept C154945302 @default.
- W2802727768 hasConcept C165021410 @default.
- W2802727768 hasConcept C199360897 @default.
- W2802727768 hasConcept C2780801425 @default.
- W2802727768 hasConcept C2984842247 @default.
- W2802727768 hasConcept C33923547 @default.
- W2802727768 hasConcept C41008148 @default.
- W2802727768 hasConcept C50644808 @default.
- W2802727768 hasConcept C67186912 @default.
- W2802727768 hasConcept C74193536 @default.
- W2802727768 hasConcept C75684735 @default.
- W2802727768 hasConcept C77088390 @default.
- W2802727768 hasConceptScore W2802727768C108583219 @default.
- W2802727768 hasConceptScore W2802727768C108827166 @default.
- W2802727768 hasConceptScore W2802727768C114614502 @default.
- W2802727768 hasConceptScore W2802727768C119857082 @default.
- W2802727768 hasConceptScore W2802727768C123201435 @default.
- W2802727768 hasConceptScore W2802727768C124101348 @default.
- W2802727768 hasConceptScore W2802727768C154945302 @default.
- W2802727768 hasConceptScore W2802727768C165021410 @default.
- W2802727768 hasConceptScore W2802727768C199360897 @default.
- W2802727768 hasConceptScore W2802727768C2780801425 @default.
- W2802727768 hasConceptScore W2802727768C2984842247 @default.
- W2802727768 hasConceptScore W2802727768C33923547 @default.
- W2802727768 hasConceptScore W2802727768C41008148 @default.
- W2802727768 hasConceptScore W2802727768C50644808 @default.
- W2802727768 hasConceptScore W2802727768C67186912 @default.
- W2802727768 hasConceptScore W2802727768C74193536 @default.
- W2802727768 hasConceptScore W2802727768C75684735 @default.
- W2802727768 hasConceptScore W2802727768C77088390 @default.
- W2802727768 hasLocation W28027277681 @default.
- W2802727768 hasOpenAccess W2802727768 @default.
- W2802727768 hasPrimaryLocation W28027277681 @default.
- W2802727768 hasRelatedWork W2909645158 @default.
- W2802727768 hasRelatedWork W2950066684 @default.
- W2802727768 hasRelatedWork W3014300295 @default.
- W2802727768 hasRelatedWork W3082895349 @default.
- W2802727768 hasRelatedWork W3179488938 @default.
- W2802727768 hasRelatedWork W3189515467 @default.
- W2802727768 hasRelatedWork W4288853838 @default.
- W2802727768 hasRelatedWork W4298388782 @default.
- W2802727768 hasRelatedWork W4312831135 @default.
- W2802727768 hasRelatedWork W4317565044 @default.
- W2802727768 isParatext "false" @default.
- W2802727768 isRetracted "false" @default.
- W2802727768 magId "2802727768" @default.
- W2802727768 workType "article" @default.