Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802731464> ?p ?o ?g. }
- W2802731464 endingPage "21" @default.
- W2802731464 startingPage "11" @default.
- W2802731464 abstract "Abstract In order to achieve high-efficiency and clean combustion in compression ignition engines, combustion must be controlled reasonably. A great variety of species with various reactivity could be produced through low temperature oxidation of fuels, which offered possible solutions for controlling the total fuel reactivity flexibly in engines. In experiments, a set of LTR system was established on an optical compression ignition engine to investigate the impact of LTR products on combustion characteristics, and the planar laser-induced fluorescence of hydroxyl (OH-PLIF) measurements were conducted to illustrate the flame development. N-heptane was chosen as the feedstock fuel. In kinetic calculations, a FLOW REACTOR model was used to predict the components of LTR products, and an HCCI model was used to evaluate the reactivity of each LTR product. The reactor model analysis and GC–MS measurements indicate that n-heptane does not take oxidation reaction at low reformer temperature of 473 K. When the reformer temperature rises up to 523 K, LTR products mainly include hydrogen, carbon monoxide, olefins, aldehydes, alkanes, alkynes, alcohols and C7 cyclic ethers through the prediction of the kinetic model. According to the experimental engine analysis, the ignition timing is retarded significantly and the heat release rate is slowed down due to the reactivity variety of in-cylinder mixture via LTR. The OH-PLIF images show that in addition to delaying the ignition timing and reducing the combustion rate, LTR also contributes to the improvement of in-cylinder combustion uniformity. The natural flame luminosity result indicates that less soot emission is formed in the combustion process by LTR. The reactivity evaluation using the kinetic modeling approach suggests that the ability of acetylene in improving reactivity is extremely strong, but the ability drops with the increasing mole fraction of acetylene. Though hydrogen, carbon monoxide, ethylene, propene and methane are present in large concentrations, they act to have little effect on mixture reactivity. However, most of the LTR products exhibit decreased mixture reactivity, which should cause a delay of the ignition in the experiment. The impacts of LTR products on ignition are influenced not only by the chemical structure, but also by the concentration in the mixture. It is inferred that the LTR products can control the ignition flexibly in compression ignition engines by changing reforming conditions." @default.
- W2802731464 created "2018-05-17" @default.
- W2802731464 creator A5005064985 @default.
- W2802731464 creator A5023017143 @default.
- W2802731464 creator A5031438165 @default.
- W2802731464 creator A5065939686 @default.
- W2802731464 date "2018-10-01" @default.
- W2802731464 modified "2023-10-15" @default.
- W2802731464 title "The impact of low temperature reforming (LTR) products of fuel-rich n-heptane on compression ignition engine combustion" @default.
- W2802731464 cites W1485724152 @default.
- W2802731464 cites W1496739636 @default.
- W2802731464 cites W1498579142 @default.
- W2802731464 cites W1505376100 @default.
- W2802731464 cites W1506526940 @default.
- W2802731464 cites W1534498030 @default.
- W2802731464 cites W1965615356 @default.
- W2802731464 cites W1970065096 @default.
- W2802731464 cites W1976937936 @default.
- W2802731464 cites W1981043381 @default.
- W2802731464 cites W1983220750 @default.
- W2802731464 cites W1987583730 @default.
- W2802731464 cites W1989918979 @default.
- W2802731464 cites W1991625005 @default.
- W2802731464 cites W2031130008 @default.
- W2802731464 cites W2031939808 @default.
- W2802731464 cites W2041134699 @default.
- W2802731464 cites W2044389501 @default.
- W2802731464 cites W2047828756 @default.
- W2802731464 cites W2053747743 @default.
- W2802731464 cites W2054026105 @default.
- W2802731464 cites W2058688506 @default.
- W2802731464 cites W2061689544 @default.
- W2802731464 cites W2068299816 @default.
- W2802731464 cites W2071424933 @default.
- W2802731464 cites W2074833301 @default.
- W2802731464 cites W2075951318 @default.
- W2802731464 cites W2078033054 @default.
- W2802731464 cites W2092625198 @default.
- W2802731464 cites W2141575645 @default.
- W2802731464 cites W2165868804 @default.
- W2802731464 cites W2205106615 @default.
- W2802731464 cites W2264585604 @default.
- W2802731464 cites W2475701287 @default.
- W2802731464 cites W2509038575 @default.
- W2802731464 cites W2528347534 @default.
- W2802731464 cites W2584580307 @default.
- W2802731464 cites W2613363322 @default.
- W2802731464 cites W2761091179 @default.
- W2802731464 doi "https://doi.org/10.1016/j.fuel.2018.04.063" @default.
- W2802731464 hasPublicationYear "2018" @default.
- W2802731464 type Work @default.
- W2802731464 sameAs 2802731464 @default.
- W2802731464 citedByCount "10" @default.
- W2802731464 countsByYear W28027314642019 @default.
- W2802731464 countsByYear W28027314642020 @default.
- W2802731464 countsByYear W28027314642021 @default.
- W2802731464 countsByYear W28027314642022 @default.
- W2802731464 crossrefType "journal-article" @default.
- W2802731464 hasAuthorship W2802731464A5005064985 @default.
- W2802731464 hasAuthorship W2802731464A5023017143 @default.
- W2802731464 hasAuthorship W2802731464A5031438165 @default.
- W2802731464 hasAuthorship W2802731464A5065939686 @default.
- W2802731464 hasConcept C105923489 @default.
- W2802731464 hasConcept C106169591 @default.
- W2802731464 hasConcept C121332964 @default.
- W2802731464 hasConcept C127413603 @default.
- W2802731464 hasConcept C159063594 @default.
- W2802731464 hasConcept C159985019 @default.
- W2802731464 hasConcept C171146098 @default.
- W2802731464 hasConcept C178790620 @default.
- W2802731464 hasConcept C180016635 @default.
- W2802731464 hasConcept C185592680 @default.
- W2802731464 hasConcept C192562407 @default.
- W2802731464 hasConcept C25797200 @default.
- W2802731464 hasConcept C2777854178 @default.
- W2802731464 hasConcept C96949565 @default.
- W2802731464 hasConcept C97355855 @default.
- W2802731464 hasConceptScore W2802731464C105923489 @default.
- W2802731464 hasConceptScore W2802731464C106169591 @default.
- W2802731464 hasConceptScore W2802731464C121332964 @default.
- W2802731464 hasConceptScore W2802731464C127413603 @default.
- W2802731464 hasConceptScore W2802731464C159063594 @default.
- W2802731464 hasConceptScore W2802731464C159985019 @default.
- W2802731464 hasConceptScore W2802731464C171146098 @default.
- W2802731464 hasConceptScore W2802731464C178790620 @default.
- W2802731464 hasConceptScore W2802731464C180016635 @default.
- W2802731464 hasConceptScore W2802731464C185592680 @default.
- W2802731464 hasConceptScore W2802731464C192562407 @default.
- W2802731464 hasConceptScore W2802731464C25797200 @default.
- W2802731464 hasConceptScore W2802731464C2777854178 @default.
- W2802731464 hasConceptScore W2802731464C96949565 @default.
- W2802731464 hasConceptScore W2802731464C97355855 @default.
- W2802731464 hasFunder F4320321001 @default.
- W2802731464 hasLocation W28027314641 @default.
- W2802731464 hasOpenAccess W2802731464 @default.
- W2802731464 hasPrimaryLocation W28027314641 @default.
- W2802731464 hasRelatedWork W1817081604 @default.
- W2802731464 hasRelatedWork W1994098540 @default.