Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802743995> ?p ?o ?g. }
- W2802743995 endingPage "995" @default.
- W2802743995 startingPage "995" @default.
- W2802743995 abstract "State of charge (SOC) estimation is becoming increasingly important, along with electric vehicle (EV) rapid development, while SOC is one of the most significant parameters for the battery management system, indicating remaining energy and ensuring the safety and reliability of EV. In this paper, a hybrid wavelet neural network (WNN) model combining the discrete wavelet transform (DWT) method and adaptive WNN is proposed to estimate the SOC of lithium-ion batteries. The WNN model is trained by Levenberg-Marquardt (L-M) algorithm, whose inputs are processed by discrete wavelet decomposition and reconstitution. Compared with back-propagation neural network (BPNN), L-M based BPNN (LMBPNN), L-M based WNN (LMWNN), DWT with L-M based BPNN (DWTLMBPNN) and extend Kalman filter (EKF), the proposed intelligent SOC estimation method is validated and proved to be effective. Under the New European Driving Cycle (NEDC), the mean absolute error and maximum error can be reduced to 0.59% and 3.13%, respectively. The characteristics of high accuracy and strong robustness of the proposed method are verified by comparison study and robustness evaluation results (e.g., measurement noise test and untrained driving cycle test)." @default.
- W2802743995 created "2018-05-17" @default.
- W2802743995 creator A5010927816 @default.
- W2802743995 creator A5013920050 @default.
- W2802743995 creator A5018702893 @default.
- W2802743995 creator A5026194818 @default.
- W2802743995 creator A5026636988 @default.
- W2802743995 creator A5055622275 @default.
- W2802743995 creator A5059790309 @default.
- W2802743995 creator A5063198608 @default.
- W2802743995 creator A5090335313 @default.
- W2802743995 date "2018-04-20" @default.
- W2802743995 modified "2023-10-14" @default.
- W2802743995 title "A Novel Intelligent Method for the State of Charge Estimation of Lithium-Ion Batteries Using a Discrete Wavelet Transform-Based Wavelet Neural Network" @default.
- W2802743995 cites W1670175697 @default.
- W2802743995 cites W1967282395 @default.
- W2802743995 cites W1968453726 @default.
- W2802743995 cites W1969797257 @default.
- W2802743995 cites W1971732876 @default.
- W2802743995 cites W2000885517 @default.
- W2802743995 cites W2010190100 @default.
- W2802743995 cites W2012684023 @default.
- W2802743995 cites W2020836369 @default.
- W2802743995 cites W2021946857 @default.
- W2802743995 cites W2023670992 @default.
- W2802743995 cites W2037195735 @default.
- W2802743995 cites W2038002124 @default.
- W2802743995 cites W2038793950 @default.
- W2802743995 cites W2039158521 @default.
- W2802743995 cites W2043643439 @default.
- W2802743995 cites W2050611179 @default.
- W2802743995 cites W2055076027 @default.
- W2802743995 cites W2056976651 @default.
- W2802743995 cites W2069207625 @default.
- W2802743995 cites W2086779092 @default.
- W2802743995 cites W2108227458 @default.
- W2802743995 cites W2151534553 @default.
- W2802743995 cites W2161138491 @default.
- W2802743995 cites W2167503549 @default.
- W2802743995 cites W2170977282 @default.
- W2802743995 cites W2184996561 @default.
- W2802743995 cites W2189494241 @default.
- W2802743995 cites W2417698035 @default.
- W2802743995 cites W2418122581 @default.
- W2802743995 cites W2516459580 @default.
- W2802743995 cites W2532508227 @default.
- W2802743995 cites W2559766451 @default.
- W2802743995 cites W2560960872 @default.
- W2802743995 cites W2566022712 @default.
- W2802743995 cites W2567340855 @default.
- W2802743995 cites W2584089850 @default.
- W2802743995 cites W2593788042 @default.
- W2802743995 cites W2597618873 @default.
- W2802743995 cites W2743993177 @default.
- W2802743995 cites W2755762063 @default.
- W2802743995 cites W2759064353 @default.
- W2802743995 cites W2769684120 @default.
- W2802743995 cites W2784549868 @default.
- W2802743995 doi "https://doi.org/10.3390/en11040995" @default.
- W2802743995 hasPublicationYear "2018" @default.
- W2802743995 type Work @default.
- W2802743995 sameAs 2802743995 @default.
- W2802743995 citedByCount "36" @default.
- W2802743995 countsByYear W28027439952019 @default.
- W2802743995 countsByYear W28027439952020 @default.
- W2802743995 countsByYear W28027439952021 @default.
- W2802743995 countsByYear W28027439952022 @default.
- W2802743995 countsByYear W28027439952023 @default.
- W2802743995 crossrefType "journal-article" @default.
- W2802743995 hasAuthorship W2802743995A5010927816 @default.
- W2802743995 hasAuthorship W2802743995A5013920050 @default.
- W2802743995 hasAuthorship W2802743995A5018702893 @default.
- W2802743995 hasAuthorship W2802743995A5026194818 @default.
- W2802743995 hasAuthorship W2802743995A5026636988 @default.
- W2802743995 hasAuthorship W2802743995A5055622275 @default.
- W2802743995 hasAuthorship W2802743995A5059790309 @default.
- W2802743995 hasAuthorship W2802743995A5063198608 @default.
- W2802743995 hasAuthorship W2802743995A5090335313 @default.
- W2802743995 hasBestOaLocation W28027439951 @default.
- W2802743995 hasConcept C104317684 @default.
- W2802743995 hasConcept C11413529 @default.
- W2802743995 hasConcept C121332964 @default.
- W2802743995 hasConcept C154945302 @default.
- W2802743995 hasConcept C157286648 @default.
- W2802743995 hasConcept C163258240 @default.
- W2802743995 hasConcept C185592680 @default.
- W2802743995 hasConcept C196216189 @default.
- W2802743995 hasConcept C2775924081 @default.
- W2802743995 hasConcept C2776582896 @default.
- W2802743995 hasConcept C41008148 @default.
- W2802743995 hasConcept C46286280 @default.
- W2802743995 hasConcept C47432892 @default.
- W2802743995 hasConcept C47446073 @default.
- W2802743995 hasConcept C50644808 @default.
- W2802743995 hasConcept C55493867 @default.
- W2802743995 hasConcept C555008776 @default.
- W2802743995 hasConcept C62520636 @default.
- W2802743995 hasConcept C63479239 @default.