Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802761093> ?p ?o ?g. }
- W2802761093 endingPage "26" @default.
- W2802761093 startingPage "13" @default.
- W2802761093 abstract "The development of new data analytical methods remains a crucial factor in the combat against insurance fraud. Methods rooted in the research field of anomaly detection are considered as promising candidates for this purpose. Commonly, a fraud data set contains both numeric and nominal attributes, where, due to the ease of expressiveness, the latter often encodes valuable expert knowledge. For this reason, an anomaly detection method should be able to handle a mixture of different data types, returning an anomaly score meaningful in the context of the business application. We propose the iForestCAD approach that computes conditional anomaly scores, useful for fraud detection. More specifically, anomaly detection is performed conditionally on well-defined data partitions that are created on the basis of selected numeric attributes and distinct combinations of values of selected nominal attributes. In this way, the resulting anomaly scores are computed with respect to a reference group of interest, thus representing a meaningful score for domain experts. Given that anomaly detection is performed conditionally, this approach allows detecting anomalies that would otherwise remain undiscovered in unconditional anomaly detection. Moreover, we present a case study in which we demonstrate the usefulness of our proposed approach on real-world workers' compensation claims received from a large European insurance organization. As a result, the iForestCAD approach is greatly accepted by domain experts for its effective detection of fraudulent claims." @default.
- W2802761093 created "2018-05-17" @default.
- W2802761093 creator A5001193136 @default.
- W2802761093 creator A5005306713 @default.
- W2802761093 creator A5048182862 @default.
- W2802761093 creator A5081225515 @default.
- W2802761093 date "2018-07-01" @default.
- W2802761093 modified "2023-10-18" @default.
- W2802761093 title "Isolation-based conditional anomaly detection on mixed-attribute data to uncover workers' compensation fraud" @default.
- W2802761093 cites W1499399937 @default.
- W2802761093 cites W1559384717 @default.
- W2802761093 cites W1966147156 @default.
- W2802761093 cites W1970088130 @default.
- W2802761093 cites W1974791687 @default.
- W2802761093 cites W1995443851 @default.
- W2802761093 cites W2004691149 @default.
- W2802761093 cites W2015887370 @default.
- W2802761093 cites W2021833436 @default.
- W2802761093 cites W2023826482 @default.
- W2802761093 cites W2026493302 @default.
- W2802761093 cites W2038819732 @default.
- W2802761093 cites W2040702235 @default.
- W2802761093 cites W2066252903 @default.
- W2802761093 cites W2070181735 @default.
- W2802761093 cites W2075949491 @default.
- W2802761093 cites W2084512860 @default.
- W2802761093 cites W2089554624 @default.
- W2802761093 cites W2095345875 @default.
- W2802761093 cites W2115329873 @default.
- W2802761093 cites W2115627867 @default.
- W2802761093 cites W2122646361 @default.
- W2802761093 cites W2124204635 @default.
- W2802761093 cites W2132870739 @default.
- W2802761093 cites W2134255060 @default.
- W2802761093 cites W2137130182 @default.
- W2802761093 cites W2158698691 @default.
- W2802761093 cites W2161336914 @default.
- W2802761093 cites W2180566385 @default.
- W2802761093 cites W2208932886 @default.
- W2802761093 cites W2614786548 @default.
- W2802761093 cites W2740924709 @default.
- W2802761093 cites W3123412255 @default.
- W2802761093 cites W3124842791 @default.
- W2802761093 cites W4248650647 @default.
- W2802761093 doi "https://doi.org/10.1016/j.dss.2018.04.001" @default.
- W2802761093 hasPublicationYear "2018" @default.
- W2802761093 type Work @default.
- W2802761093 sameAs 2802761093 @default.
- W2802761093 citedByCount "35" @default.
- W2802761093 countsByYear W28027610932019 @default.
- W2802761093 countsByYear W28027610932020 @default.
- W2802761093 countsByYear W28027610932021 @default.
- W2802761093 countsByYear W28027610932022 @default.
- W2802761093 countsByYear W28027610932023 @default.
- W2802761093 crossrefType "journal-article" @default.
- W2802761093 hasAuthorship W2802761093A5001193136 @default.
- W2802761093 hasAuthorship W2802761093A5005306713 @default.
- W2802761093 hasAuthorship W2802761093A5048182862 @default.
- W2802761093 hasAuthorship W2802761093A5081225515 @default.
- W2802761093 hasBestOaLocation W28027610932 @default.
- W2802761093 hasConcept C11171543 @default.
- W2802761093 hasConcept C121332964 @default.
- W2802761093 hasConcept C124101348 @default.
- W2802761093 hasConcept C12997251 @default.
- W2802761093 hasConcept C134306372 @default.
- W2802761093 hasConcept C151730666 @default.
- W2802761093 hasConcept C15744967 @default.
- W2802761093 hasConcept C177264268 @default.
- W2802761093 hasConcept C199360897 @default.
- W2802761093 hasConcept C26873012 @default.
- W2802761093 hasConcept C2779343474 @default.
- W2802761093 hasConcept C2780023022 @default.
- W2802761093 hasConcept C33923547 @default.
- W2802761093 hasConcept C36503486 @default.
- W2802761093 hasConcept C41008148 @default.
- W2802761093 hasConcept C739882 @default.
- W2802761093 hasConcept C86803240 @default.
- W2802761093 hasConceptScore W2802761093C11171543 @default.
- W2802761093 hasConceptScore W2802761093C121332964 @default.
- W2802761093 hasConceptScore W2802761093C124101348 @default.
- W2802761093 hasConceptScore W2802761093C12997251 @default.
- W2802761093 hasConceptScore W2802761093C134306372 @default.
- W2802761093 hasConceptScore W2802761093C151730666 @default.
- W2802761093 hasConceptScore W2802761093C15744967 @default.
- W2802761093 hasConceptScore W2802761093C177264268 @default.
- W2802761093 hasConceptScore W2802761093C199360897 @default.
- W2802761093 hasConceptScore W2802761093C26873012 @default.
- W2802761093 hasConceptScore W2802761093C2779343474 @default.
- W2802761093 hasConceptScore W2802761093C2780023022 @default.
- W2802761093 hasConceptScore W2802761093C33923547 @default.
- W2802761093 hasConceptScore W2802761093C36503486 @default.
- W2802761093 hasConceptScore W2802761093C41008148 @default.
- W2802761093 hasConceptScore W2802761093C739882 @default.
- W2802761093 hasConceptScore W2802761093C86803240 @default.
- W2802761093 hasLocation W28027610931 @default.
- W2802761093 hasLocation W28027610932 @default.
- W2802761093 hasLocation W28027610933 @default.
- W2802761093 hasOpenAccess W2802761093 @default.