Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802765905> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2802765905 endingPage "184797901876842" @default.
- W2802765905 startingPage "184797901876842" @default.
- W2802765905 abstract "Most deterministic optimization models use average values of nondeterministic variables as their inputs. It is, therefore, expected that a model that can accept the distribution of a random variable, while this may involve some more computational complexity, would likely produce better results than the model using the average value. Artificial neural network (ANN) is a standard technique for solving complex stochastic problems. In this research, ANN and adaptive neuro-fuzzy inference system (ANFIS) have been implemented for modeling and optimizing product distribution in a multi-echelon transshipment system. Two inputs parameters, product demand and unit cost of shipment, are considered nondeterministic in this problem. The solutions of ANFIS and ANN were compared to that of the classical transshipment model. The optimal total cost of distribution using the classical model within the period of investigation was 6,332,304.00. In the search for a better solution, an ANN model was trained, tested, and validated. This approach reduced the cost to 4,170,500.00. ANFIS approach reduced the cost to 4,053,661. This implies that 34% of the current operational cost was saved using the ANN model, while 36% was saved using the ANFIS model. This suggests that the result obtained from the ANFIS model also seems marginally better than that of the ANN. Also, the ANFIS model is capable of adjusting the values of input and output variables and parameters to obtain a more robust solution." @default.
- W2802765905 created "2018-05-17" @default.
- W2802765905 creator A5055663710 @default.
- W2802765905 creator A5083985681 @default.
- W2802765905 date "2018-01-01" @default.
- W2802765905 modified "2023-10-11" @default.
- W2802765905 title "A comparative study of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models in distribution system with nondeterministic inputs" @default.
- W2802765905 cites W1974324119 @default.
- W2802765905 cites W2004103130 @default.
- W2802765905 cites W2004145388 @default.
- W2802765905 cites W2052851219 @default.
- W2802765905 cites W2079294678 @default.
- W2802765905 cites W2151657815 @default.
- W2802765905 cites W2223491879 @default.
- W2802765905 cites W2297710625 @default.
- W2802765905 cites W2310065469 @default.
- W2802765905 cites W2328357133 @default.
- W2802765905 cites W2346170315 @default.
- W2802765905 cites W2412981864 @default.
- W2802765905 cites W2523347528 @default.
- W2802765905 cites W2525375515 @default.
- W2802765905 cites W611293336 @default.
- W2802765905 doi "https://doi.org/10.1177/1847979018768421" @default.
- W2802765905 hasPublicationYear "2018" @default.
- W2802765905 type Work @default.
- W2802765905 sameAs 2802765905 @default.
- W2802765905 citedByCount "35" @default.
- W2802765905 countsByYear W28027659052019 @default.
- W2802765905 countsByYear W28027659052020 @default.
- W2802765905 countsByYear W28027659052021 @default.
- W2802765905 countsByYear W28027659052022 @default.
- W2802765905 countsByYear W28027659052023 @default.
- W2802765905 crossrefType "journal-article" @default.
- W2802765905 hasAuthorship W2802765905A5055663710 @default.
- W2802765905 hasAuthorship W2802765905A5083985681 @default.
- W2802765905 hasBestOaLocation W28027659051 @default.
- W2802765905 hasConcept C11413529 @default.
- W2802765905 hasConcept C126255220 @default.
- W2802765905 hasConcept C154945302 @default.
- W2802765905 hasConcept C176181172 @default.
- W2802765905 hasConcept C186108316 @default.
- W2802765905 hasConcept C195975749 @default.
- W2802765905 hasConcept C29470771 @default.
- W2802765905 hasConcept C33923547 @default.
- W2802765905 hasConcept C41008148 @default.
- W2802765905 hasConcept C50644808 @default.
- W2802765905 hasConcept C58166 @default.
- W2802765905 hasConceptScore W2802765905C11413529 @default.
- W2802765905 hasConceptScore W2802765905C126255220 @default.
- W2802765905 hasConceptScore W2802765905C154945302 @default.
- W2802765905 hasConceptScore W2802765905C176181172 @default.
- W2802765905 hasConceptScore W2802765905C186108316 @default.
- W2802765905 hasConceptScore W2802765905C195975749 @default.
- W2802765905 hasConceptScore W2802765905C29470771 @default.
- W2802765905 hasConceptScore W2802765905C33923547 @default.
- W2802765905 hasConceptScore W2802765905C41008148 @default.
- W2802765905 hasConceptScore W2802765905C50644808 @default.
- W2802765905 hasConceptScore W2802765905C58166 @default.
- W2802765905 hasLocation W28027659051 @default.
- W2802765905 hasLocation W28027659052 @default.
- W2802765905 hasOpenAccess W2802765905 @default.
- W2802765905 hasPrimaryLocation W28027659051 @default.
- W2802765905 hasRelatedWork W2032623774 @default.
- W2802765905 hasRelatedWork W2275399693 @default.
- W2802765905 hasRelatedWork W2300290509 @default.
- W2802765905 hasRelatedWork W2499167147 @default.
- W2802765905 hasRelatedWork W2785395359 @default.
- W2802765905 hasRelatedWork W2914862050 @default.
- W2802765905 hasRelatedWork W3024232274 @default.
- W2802765905 hasRelatedWork W4205299485 @default.
- W2802765905 hasRelatedWork W4310906510 @default.
- W2802765905 hasRelatedWork W594580893 @default.
- W2802765905 hasVolume "10" @default.
- W2802765905 isParatext "false" @default.
- W2802765905 isRetracted "false" @default.
- W2802765905 magId "2802765905" @default.
- W2802765905 workType "article" @default.