Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802918503> ?p ?o ?g. }
- W2802918503 endingPage "14057" @default.
- W2802918503 startingPage "14037" @default.
- W2802918503 abstract "Abstract. Atmospheric aging promotes internal mixing of black carbon (BC), leading to an enhancement of light absorption and radiative forcing. The relationship between BC mixing state and consequent absorption enhancement was never estimated for BC found in the Arctic region. In the present work, we aim to quantify the absorption enhancement and its impact on radiative forcing as a function of microphysical properties and mixing state of BC observed in situ at the Zeppelin Arctic station (78∘ N) in the spring of 2012 during the CLIMSLIP (Climate impacts of short-lived pollutants in the polar region) project. Single-particle soot photometer (SP2) measurements showed a mean mass concentration of refractory black carbon (rBC) of 39 ng m−3, while the rBC mass size distribution was of lognormal shape, peaking at an rBC mass-equivalent diameter (DrBC) of around 240 nm. On average, the number fraction of particles containing a BC core with DrBC>80 nm was less than 5 % in the size range (overall optical particle diameter) from 150 to 500 nm. The BC cores were internally mixed with other particulate matter. The median coating thickness of BC cores with 220 nm < DrBC< 260 nm was 52 nm, resulting in a core–shell diameter ratio of 1.4, assuming a coated sphere morphology. Combining the aerosol absorption coefficient observed with an Aethalometer and the rBC mass concentration from the SP2, a mass absorption cross section (MAC) of 9.8 m2 g−1 was inferred at a wavelength of 550 nm. Consistent with direct observation, a similar MAC value (8.4 m2 g−1 at 550 nm) was obtained indirectly by using Mie theory and assuming a coated-sphere morphology with the BC mixing state constrained from the SP2 measurements. According to these calculations, the lensing effect is estimated to cause a 54 % enhancement of the MAC compared to that of bare BC particles with equal BC core size distribution. Finally, the ARTDECO radiative transfer model was used to estimate the sensitivity of the radiative balance to changes in light absorption by BC as a result of a varying degree of internal mixing at constant total BC mass. The clear-sky noontime aerosol radiative forcing over a surface with an assumed wavelength-dependent albedo of 0.76–0.89 decreased, when ignoring the absorption enhancement, by −0.12 W m−2 compared to the base case scenario, which was constrained with mean observed aerosol properties for the Zeppelin site in Arctic spring. The exact magnitude of this forcing difference scales with environmental conditions such as the aerosol optical depth, solar zenith angle and surface albedo. Nevertheless, our investigation suggests that the absorption enhancement due to internal mixing of BC, which is a systematic effect, should be considered for quantifying the aerosol radiative forcing in the Arctic region." @default.
- W2802918503 created "2018-05-17" @default.
- W2802918503 creator A5002068564 @default.
- W2802918503 creator A5003301279 @default.
- W2802918503 creator A5003987428 @default.
- W2802918503 creator A5009462145 @default.
- W2802918503 creator A5015240480 @default.
- W2802918503 creator A5031427624 @default.
- W2802918503 creator A5044025292 @default.
- W2802918503 creator A5067769357 @default.
- W2802918503 creator A5067919769 @default.
- W2802918503 creator A5069713424 @default.
- W2802918503 creator A5079593262 @default.
- W2802918503 creator A5090286585 @default.
- W2802918503 date "2018-10-04" @default.
- W2802918503 modified "2023-10-15" @default.
- W2802918503 title "Effects of mixing state on optical and radiative properties of black carbon in the European Arctic" @default.
- W2802918503 cites W1498792013 @default.
- W2802918503 cites W1814331113 @default.
- W2802918503 cites W1907369419 @default.
- W2802918503 cites W1967981925 @default.
- W2802918503 cites W1969902735 @default.
- W2802918503 cites W1978939574 @default.
- W2802918503 cites W1982162561 @default.
- W2802918503 cites W1983279359 @default.
- W2802918503 cites W1985965824 @default.
- W2802918503 cites W1990068206 @default.
- W2802918503 cites W1991695588 @default.
- W2802918503 cites W1993138195 @default.
- W2802918503 cites W2003688041 @default.
- W2802918503 cites W2004168438 @default.
- W2802918503 cites W2004465047 @default.
- W2802918503 cites W2008890635 @default.
- W2802918503 cites W2021206942 @default.
- W2802918503 cites W2022465891 @default.
- W2802918503 cites W2022656631 @default.
- W2802918503 cites W2028111254 @default.
- W2802918503 cites W2037490486 @default.
- W2802918503 cites W2040928459 @default.
- W2802918503 cites W2043437215 @default.
- W2802918503 cites W2044582584 @default.
- W2802918503 cites W2048322876 @default.
- W2802918503 cites W2053651823 @default.
- W2802918503 cites W2055381129 @default.
- W2802918503 cites W2060576432 @default.
- W2802918503 cites W2066085600 @default.
- W2802918503 cites W2070259289 @default.
- W2802918503 cites W2070796364 @default.
- W2802918503 cites W2070861616 @default.
- W2802918503 cites W2081134248 @default.
- W2802918503 cites W2083988711 @default.
- W2802918503 cites W2085849605 @default.
- W2802918503 cites W2089195025 @default.
- W2802918503 cites W2092208950 @default.
- W2802918503 cites W2093117139 @default.
- W2802918503 cites W2094773918 @default.
- W2802918503 cites W2095425670 @default.
- W2802918503 cites W2095850584 @default.
- W2802918503 cites W2098106771 @default.
- W2802918503 cites W2103251575 @default.
- W2802918503 cites W2112035415 @default.
- W2802918503 cites W2123938491 @default.
- W2802918503 cites W2128903528 @default.
- W2802918503 cites W2131084867 @default.
- W2802918503 cites W2132294853 @default.
- W2802918503 cites W2136760397 @default.
- W2802918503 cites W2144664102 @default.
- W2802918503 cites W2148674484 @default.
- W2802918503 cites W2149022481 @default.
- W2802918503 cites W2153947102 @default.
- W2802918503 cites W2154250465 @default.
- W2802918503 cites W2155024231 @default.
- W2802918503 cites W2159783447 @default.
- W2802918503 cites W2160096527 @default.
- W2802918503 cites W2162214076 @default.
- W2802918503 cites W2163109203 @default.
- W2802918503 cites W2163616447 @default.
- W2802918503 cites W2164163297 @default.
- W2802918503 cites W2171616014 @default.
- W2802918503 cites W2179713754 @default.
- W2802918503 cites W2254445991 @default.
- W2802918503 cites W2283642567 @default.
- W2802918503 cites W2460117645 @default.
- W2802918503 cites W2512042584 @default.
- W2802918503 cites W2522163740 @default.
- W2802918503 cites W2591619922 @default.
- W2802918503 cites W2593363489 @default.
- W2802918503 cites W2616126084 @default.
- W2802918503 cites W2778553093 @default.
- W2802918503 cites W2981420978 @default.
- W2802918503 cites W4235206525 @default.
- W2802918503 cites W4239384842 @default.
- W2802918503 doi "https://doi.org/10.5194/acp-18-14037-2018" @default.
- W2802918503 hasPublicationYear "2018" @default.
- W2802918503 type Work @default.
- W2802918503 sameAs 2802918503 @default.
- W2802918503 citedByCount "50" @default.
- W2802918503 countsByYear W28029185032019 @default.