Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802953454> ?p ?o ?g. }
- W2802953454 endingPage "174" @default.
- W2802953454 startingPage "165" @default.
- W2802953454 abstract "Abstract Recent developments in machine learning have expanded data-driven modelling (DDM) capabilities, allowing artificial intelligence to infer the behaviour of a system by computing and exploiting correlations between observed variables within it. Machine learning algorithms may enable the use of increasingly available ‘big data’ and assist applying ecosystem service models across scales, analysing and predicting the flows of these services to disaggregated beneficiaries. We use the Weka and ARIES software to produce two examples of DDM: firewood use in South Africa and biodiversity value in Sicily, respectively. Our South African example demonstrates that DDM (64–91% accuracy) can identify the areas where firewood use is within the top quartile with comparable accuracy as conventional modelling techniques (54–77% accuracy). The Sicilian example highlights how DDM can be made more accessible to decision makers, who show both capacity and willingness to engage with uncertainty information. Uncertainty estimates, produced as part of the DDM process, allow decision makers to determine what level of uncertainty is acceptable to them and to use their own expertise for potentially contentious decisions. We conclude that DDM has a clear role to play when modelling ecosystem services, helping produce interdisciplinary models and holistic solutions to complex socio-ecological issues." @default.
- W2802953454 created "2018-05-17" @default.
- W2802953454 creator A5017191892 @default.
- W2802953454 creator A5018095827 @default.
- W2802953454 creator A5027598285 @default.
- W2802953454 creator A5035998055 @default.
- W2802953454 creator A5036077300 @default.
- W2802953454 creator A5041764112 @default.
- W2802953454 creator A5050516177 @default.
- W2802953454 creator A5056295113 @default.
- W2802953454 creator A5070260526 @default.
- W2802953454 creator A5071838655 @default.
- W2802953454 creator A5075577830 @default.
- W2802953454 creator A5082372328 @default.
- W2802953454 creator A5091810634 @default.
- W2802953454 date "2018-10-01" @default.
- W2802953454 modified "2023-10-16" @default.
- W2802953454 title "Machine learning for ecosystem services" @default.
- W2802953454 cites W1049321516 @default.
- W2802953454 cites W1494192115 @default.
- W2802953454 cites W1901616594 @default.
- W2802953454 cites W1920845339 @default.
- W2802953454 cites W1968082989 @default.
- W2802953454 cites W1973107043 @default.
- W2802953454 cites W1984530829 @default.
- W2802953454 cites W1988322132 @default.
- W2802953454 cites W1989179819 @default.
- W2802953454 cites W1989750313 @default.
- W2802953454 cites W1993882092 @default.
- W2802953454 cites W2001391324 @default.
- W2802953454 cites W2004637521 @default.
- W2802953454 cites W2016210396 @default.
- W2802953454 cites W2040263621 @default.
- W2802953454 cites W2040884411 @default.
- W2802953454 cites W2045040422 @default.
- W2802953454 cites W2046935534 @default.
- W2802953454 cites W2047581137 @default.
- W2802953454 cites W2048076161 @default.
- W2802953454 cites W2058537245 @default.
- W2802953454 cites W2067155004 @default.
- W2802953454 cites W2074977053 @default.
- W2802953454 cites W2076063813 @default.
- W2802953454 cites W2089871805 @default.
- W2802953454 cites W2095739681 @default.
- W2802953454 cites W2097686432 @default.
- W2802953454 cites W2108255332 @default.
- W2802953454 cites W2133990480 @default.
- W2802953454 cites W2137219016 @default.
- W2802953454 cites W2141007997 @default.
- W2802953454 cites W2149254378 @default.
- W2802953454 cites W2150798249 @default.
- W2802953454 cites W2155804766 @default.
- W2802953454 cites W2159793693 @default.
- W2802953454 cites W2165338797 @default.
- W2802953454 cites W2168621474 @default.
- W2802953454 cites W2169969573 @default.
- W2802953454 cites W2171642129 @default.
- W2802953454 cites W2301474920 @default.
- W2802953454 cites W2417069120 @default.
- W2802953454 cites W2442832733 @default.
- W2802953454 cites W2513506629 @default.
- W2802953454 cites W2516620248 @default.
- W2802953454 cites W2529365816 @default.
- W2802953454 cites W2549473102 @default.
- W2802953454 cites W2587918629 @default.
- W2802953454 cites W2589424942 @default.
- W2802953454 cites W2590006957 @default.
- W2802953454 cites W2610886376 @default.
- W2802953454 cites W2613340563 @default.
- W2802953454 cites W2615225013 @default.
- W2802953454 cites W2734304194 @default.
- W2802953454 cites W2754817565 @default.
- W2802953454 doi "https://doi.org/10.1016/j.ecoser.2018.04.004" @default.
- W2802953454 hasPublicationYear "2018" @default.
- W2802953454 type Work @default.
- W2802953454 sameAs 2802953454 @default.
- W2802953454 citedByCount "96" @default.
- W2802953454 countsByYear W28029534542018 @default.
- W2802953454 countsByYear W28029534542019 @default.
- W2802953454 countsByYear W28029534542020 @default.
- W2802953454 countsByYear W28029534542021 @default.
- W2802953454 countsByYear W28029534542022 @default.
- W2802953454 countsByYear W28029534542023 @default.
- W2802953454 crossrefType "journal-article" @default.
- W2802953454 hasAuthorship W2802953454A5017191892 @default.
- W2802953454 hasAuthorship W2802953454A5018095827 @default.
- W2802953454 hasAuthorship W2802953454A5027598285 @default.
- W2802953454 hasAuthorship W2802953454A5035998055 @default.
- W2802953454 hasAuthorship W2802953454A5036077300 @default.
- W2802953454 hasAuthorship W2802953454A5041764112 @default.
- W2802953454 hasAuthorship W2802953454A5050516177 @default.
- W2802953454 hasAuthorship W2802953454A5056295113 @default.
- W2802953454 hasAuthorship W2802953454A5070260526 @default.
- W2802953454 hasAuthorship W2802953454A5071838655 @default.
- W2802953454 hasAuthorship W2802953454A5075577830 @default.
- W2802953454 hasAuthorship W2802953454A5082372328 @default.
- W2802953454 hasAuthorship W2802953454A5091810634 @default.
- W2802953454 hasBestOaLocation W28029534541 @default.