Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802969889> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2802969889 endingPage "10" @default.
- W2802969889 startingPage "1" @default.
- W2802969889 abstract "Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified." @default.
- W2802969889 created "2018-05-17" @default.
- W2802969889 creator A5030896421 @default.
- W2802969889 creator A5041916123 @default.
- W2802969889 creator A5060372724 @default.
- W2802969889 creator A5061584932 @default.
- W2802969889 creator A5064842058 @default.
- W2802969889 creator A5073259786 @default.
- W2802969889 date "2018-01-01" @default.
- W2802969889 modified "2023-10-14" @default.
- W2802969889 title "Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO" @default.
- W2802969889 cites W1526662772 @default.
- W2802969889 cites W1779959761 @default.
- W2802969889 cites W1986238223 @default.
- W2802969889 cites W1991324991 @default.
- W2802969889 cites W1997709301 @default.
- W2802969889 cites W2018060680 @default.
- W2802969889 cites W2044276421 @default.
- W2802969889 cites W2086220584 @default.
- W2802969889 cites W2112019442 @default.
- W2802969889 cites W2141203194 @default.
- W2802969889 cites W2234650031 @default.
- W2802969889 cites W2304758233 @default.
- W2802969889 cites W2404896868 @default.
- W2802969889 cites W2425023303 @default.
- W2802969889 cites W2490901342 @default.
- W2802969889 cites W2520657381 @default.
- W2802969889 cites W2534545338 @default.
- W2802969889 cites W2538531551 @default.
- W2802969889 cites W254432004 @default.
- W2802969889 cites W2618720482 @default.
- W2802969889 cites W4238637889 @default.
- W2802969889 doi "https://doi.org/10.1155/2018/1461470" @default.
- W2802969889 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5949190" @default.
- W2802969889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29853983" @default.
- W2802969889 hasPublicationYear "2018" @default.
- W2802969889 type Work @default.
- W2802969889 sameAs 2802969889 @default.
- W2802969889 citedByCount "8" @default.
- W2802969889 countsByYear W28029698892018 @default.
- W2802969889 countsByYear W28029698892019 @default.
- W2802969889 countsByYear W28029698892020 @default.
- W2802969889 countsByYear W28029698892021 @default.
- W2802969889 countsByYear W28029698892022 @default.
- W2802969889 crossrefType "journal-article" @default.
- W2802969889 hasAuthorship W2802969889A5030896421 @default.
- W2802969889 hasAuthorship W2802969889A5041916123 @default.
- W2802969889 hasAuthorship W2802969889A5060372724 @default.
- W2802969889 hasAuthorship W2802969889A5061584932 @default.
- W2802969889 hasAuthorship W2802969889A5064842058 @default.
- W2802969889 hasAuthorship W2802969889A5073259786 @default.
- W2802969889 hasBestOaLocation W28029698891 @default.
- W2802969889 hasConcept C110407247 @default.
- W2802969889 hasConcept C11413529 @default.
- W2802969889 hasConcept C121332964 @default.
- W2802969889 hasConcept C12267149 @default.
- W2802969889 hasConcept C126255220 @default.
- W2802969889 hasConcept C153180895 @default.
- W2802969889 hasConcept C154945302 @default.
- W2802969889 hasConcept C33923547 @default.
- W2802969889 hasConcept C41008148 @default.
- W2802969889 hasConcept C74650414 @default.
- W2802969889 hasConcept C85617194 @default.
- W2802969889 hasConceptScore W2802969889C110407247 @default.
- W2802969889 hasConceptScore W2802969889C11413529 @default.
- W2802969889 hasConceptScore W2802969889C121332964 @default.
- W2802969889 hasConceptScore W2802969889C12267149 @default.
- W2802969889 hasConceptScore W2802969889C126255220 @default.
- W2802969889 hasConceptScore W2802969889C153180895 @default.
- W2802969889 hasConceptScore W2802969889C154945302 @default.
- W2802969889 hasConceptScore W2802969889C33923547 @default.
- W2802969889 hasConceptScore W2802969889C41008148 @default.
- W2802969889 hasConceptScore W2802969889C74650414 @default.
- W2802969889 hasConceptScore W2802969889C85617194 @default.
- W2802969889 hasFunder F4320321543 @default.
- W2802969889 hasLocation W28029698891 @default.
- W2802969889 hasLocation W28029698892 @default.
- W2802969889 hasLocation W28029698893 @default.
- W2802969889 hasLocation W28029698894 @default.
- W2802969889 hasOpenAccess W2802969889 @default.
- W2802969889 hasPrimaryLocation W28029698891 @default.
- W2802969889 hasRelatedWork W2041399278 @default.
- W2802969889 hasRelatedWork W2099369243 @default.
- W2802969889 hasRelatedWork W2136184105 @default.
- W2802969889 hasRelatedWork W2141705618 @default.
- W2802969889 hasRelatedWork W2153189372 @default.
- W2802969889 hasRelatedWork W2160451891 @default.
- W2802969889 hasRelatedWork W2163073107 @default.
- W2802969889 hasRelatedWork W4223656335 @default.
- W2802969889 hasRelatedWork W2187500075 @default.
- W2802969889 hasRelatedWork W2345184372 @default.
- W2802969889 hasVolume "2018" @default.
- W2802969889 isParatext "false" @default.
- W2802969889 isRetracted "false" @default.
- W2802969889 magId "2802969889" @default.
- W2802969889 workType "article" @default.