Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802973452> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2802973452 abstract "The aim of this work is to generate simulations of various sampling protocols of a longitudinal study of binary data. The conservation status of a site is evaluated as good or bad. This evaluation is repeated on several sites and repeated over time. The main interest is to evaluate the proportion of sites in good or bad conservation state during the first year (initial situation) and then to evaluate how the situation change over time (trends). We want to evaluate the influence of the sampling size, frequency, repetition, etc... on the statistical power and the size of the confidence intervals. A first function generate the simulations, analyze the fake dataset and stores the model parameters. A grid of function parameters is generated to apply this first function with various combinations of options corresponding to various sampling protocols. A second function aggregate these for each combination of parameters and compute descriptive statistics like the power of the tests and the confidence intervals of the parameters The outputs are saved on the disc and are available for data visualization (produced in another script). The pdf report present a graphical exploration of the of these simulations. The results directory contains the ouput of the raw simulations : output_simulations_initial.csv are simulation for one year only to estimate the initial proportion of sites in bad conservation state. output_simulations_trends.csv contains simulations of dataset over several years to explore the statistical power of the slopes/trends over time. there are 50 simulations for each combination of parameters. The 2 other files are aggregated versions of these files. The 50 simulations for each combination of parameters are grouped to compute the statistical power and confidence intervals. This approach of power analysis is described by Gelman & Hill (2007) : Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press" @default.
- W2802973452 created "2018-05-17" @default.
- W2802973452 creator A5073277600 @default.
- W2802973452 date "2018-01-01" @default.
- W2802973452 modified "2023-09-23" @default.
- W2802973452 title "Power analysis for longitudinal binary data" @default.
- W2802973452 doi "https://doi.org/10.6084/m9.figshare.5886946.v1" @default.
- W2802973452 hasPublicationYear "2018" @default.
- W2802973452 type Work @default.
- W2802973452 sameAs 2802973452 @default.
- W2802973452 citedByCount "0" @default.
- W2802973452 crossrefType "journal-article" @default.
- W2802973452 hasAuthorship W2802973452A5073277600 @default.
- W2802973452 hasConcept C105795698 @default.
- W2802973452 hasConcept C106131492 @default.
- W2802973452 hasConcept C124101348 @default.
- W2802973452 hasConcept C132964779 @default.
- W2802973452 hasConcept C14036430 @default.
- W2802973452 hasConcept C140779682 @default.
- W2802973452 hasConcept C31972630 @default.
- W2802973452 hasConcept C33923547 @default.
- W2802973452 hasConcept C41008148 @default.
- W2802973452 hasConcept C44249647 @default.
- W2802973452 hasConcept C48372109 @default.
- W2802973452 hasConcept C78458016 @default.
- W2802973452 hasConcept C86803240 @default.
- W2802973452 hasConcept C94375191 @default.
- W2802973452 hasConceptScore W2802973452C105795698 @default.
- W2802973452 hasConceptScore W2802973452C106131492 @default.
- W2802973452 hasConceptScore W2802973452C124101348 @default.
- W2802973452 hasConceptScore W2802973452C132964779 @default.
- W2802973452 hasConceptScore W2802973452C14036430 @default.
- W2802973452 hasConceptScore W2802973452C140779682 @default.
- W2802973452 hasConceptScore W2802973452C31972630 @default.
- W2802973452 hasConceptScore W2802973452C33923547 @default.
- W2802973452 hasConceptScore W2802973452C41008148 @default.
- W2802973452 hasConceptScore W2802973452C44249647 @default.
- W2802973452 hasConceptScore W2802973452C48372109 @default.
- W2802973452 hasConceptScore W2802973452C78458016 @default.
- W2802973452 hasConceptScore W2802973452C86803240 @default.
- W2802973452 hasConceptScore W2802973452C94375191 @default.
- W2802973452 hasLocation W28029734521 @default.
- W2802973452 hasOpenAccess W2802973452 @default.
- W2802973452 hasPrimaryLocation W28029734521 @default.
- W2802973452 hasRelatedWork W1587055054 @default.
- W2802973452 hasRelatedWork W1594513573 @default.
- W2802973452 hasRelatedWork W193150700 @default.
- W2802973452 hasRelatedWork W1973426289 @default.
- W2802973452 hasRelatedWork W1991901530 @default.
- W2802973452 hasRelatedWork W1997964941 @default.
- W2802973452 hasRelatedWork W1998235609 @default.
- W2802973452 hasRelatedWork W2029908855 @default.
- W2802973452 hasRelatedWork W2076600040 @default.
- W2802973452 hasRelatedWork W2142336274 @default.
- W2802973452 hasRelatedWork W2186007974 @default.
- W2802973452 hasRelatedWork W24696163 @default.
- W2802973452 hasRelatedWork W2984071814 @default.
- W2802973452 hasRelatedWork W3169489082 @default.
- W2802973452 hasRelatedWork W594986540 @default.
- W2802973452 hasRelatedWork W759763707 @default.
- W2802973452 hasRelatedWork W1617168926 @default.
- W2802973452 hasRelatedWork W2296012772 @default.
- W2802973452 hasRelatedWork W2772918855 @default.
- W2802973452 hasRelatedWork W2964370756 @default.
- W2802973452 isParatext "false" @default.
- W2802973452 isRetracted "false" @default.
- W2802973452 magId "2802973452" @default.
- W2802973452 workType "article" @default.