Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803130816> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2803130816 endingPage "243" @default.
- W2803130816 startingPage "236" @default.
- W2803130816 abstract "Traffic Related Air Pollution (TRAP) studies are usually investigated using different categories such as air pollution exposure for health impacts, urban transportation network design to mitigate pollution, environmental impacts of pollution, etc. All of these subfields often rely on a robust air pollution model, which also necessitates an accurate prediction of future pollutants. As is widely accepted by the heath authorities, TRAP is considered to be the major health issue in urban areas, and it is difficult to keep pollution at harmless levels if the time sequenced dynamic pollution and traffic parameters are not identified and modelled efficiently. In our work here, artificial intelligence techniques, such as Bayesian Networks with an optimized configuration, are used to deliver a probabilistic traffic data analysis and predictive modelling for air pollution (SO2, NO2 and CO) at very local scale of an urban region with up to 85% accuracy. The main challenge for traditional data analysis is a lack of capability to reveal the hidden links between distant data attributes (e.g. pollution sources, dynamic traffic parameters, etc.), whereas some subtle effects of these parameters or events may play an important role in pollution on a long-term basis. This study focuses on the optimisation of Bayesian Networks to unveil hidden links and to increase the prediction accuracy of TRAP considering its further association with a predictive GIS system." @default.
- W2803130816 created "2018-06-01" @default.
- W2803130816 creator A5035217336 @default.
- W2803130816 creator A5041839610 @default.
- W2803130816 creator A5043675797 @default.
- W2803130816 creator A5055283205 @default.
- W2803130816 date "2018-08-01" @default.
- W2803130816 modified "2023-10-18" @default.
- W2803130816 title "Use of Bayesian inference method to model vehicular air pollution in local urban areas" @default.
- W2803130816 cites W1987512054 @default.
- W2803130816 cites W2001863067 @default.
- W2803130816 cites W2014249908 @default.
- W2803130816 cites W2015287241 @default.
- W2803130816 cites W2064356953 @default.
- W2803130816 cites W2067452494 @default.
- W2803130816 cites W2076166095 @default.
- W2803130816 cites W2077943684 @default.
- W2803130816 cites W2091128691 @default.
- W2803130816 cites W2108729232 @default.
- W2803130816 cites W2117268657 @default.
- W2803130816 cites W2169797785 @default.
- W2803130816 cites W2170130280 @default.
- W2803130816 cites W2315900753 @default.
- W2803130816 cites W2560010591 @default.
- W2803130816 cites W2619143581 @default.
- W2803130816 cites W4211177544 @default.
- W2803130816 doi "https://doi.org/10.1016/j.trd.2018.05.009" @default.
- W2803130816 hasPublicationYear "2018" @default.
- W2803130816 type Work @default.
- W2803130816 sameAs 2803130816 @default.
- W2803130816 citedByCount "22" @default.
- W2803130816 countsByYear W28031308162019 @default.
- W2803130816 countsByYear W28031308162020 @default.
- W2803130816 countsByYear W28031308162021 @default.
- W2803130816 countsByYear W28031308162022 @default.
- W2803130816 countsByYear W28031308162023 @default.
- W2803130816 crossrefType "journal-article" @default.
- W2803130816 hasAuthorship W2803130816A5035217336 @default.
- W2803130816 hasAuthorship W2803130816A5041839610 @default.
- W2803130816 hasAuthorship W2803130816A5043675797 @default.
- W2803130816 hasAuthorship W2803130816A5055283205 @default.
- W2803130816 hasBestOaLocation W28031308162 @default.
- W2803130816 hasConcept C107673813 @default.
- W2803130816 hasConcept C119857082 @default.
- W2803130816 hasConcept C154945302 @default.
- W2803130816 hasConcept C178790620 @default.
- W2803130816 hasConcept C185592680 @default.
- W2803130816 hasConcept C18903297 @default.
- W2803130816 hasConcept C2776214188 @default.
- W2803130816 hasConcept C33724603 @default.
- W2803130816 hasConcept C39432304 @default.
- W2803130816 hasConcept C41008148 @default.
- W2803130816 hasConcept C49937458 @default.
- W2803130816 hasConcept C521259446 @default.
- W2803130816 hasConcept C559116025 @default.
- W2803130816 hasConcept C82142266 @default.
- W2803130816 hasConcept C86803240 @default.
- W2803130816 hasConceptScore W2803130816C107673813 @default.
- W2803130816 hasConceptScore W2803130816C119857082 @default.
- W2803130816 hasConceptScore W2803130816C154945302 @default.
- W2803130816 hasConceptScore W2803130816C178790620 @default.
- W2803130816 hasConceptScore W2803130816C185592680 @default.
- W2803130816 hasConceptScore W2803130816C18903297 @default.
- W2803130816 hasConceptScore W2803130816C2776214188 @default.
- W2803130816 hasConceptScore W2803130816C33724603 @default.
- W2803130816 hasConceptScore W2803130816C39432304 @default.
- W2803130816 hasConceptScore W2803130816C41008148 @default.
- W2803130816 hasConceptScore W2803130816C49937458 @default.
- W2803130816 hasConceptScore W2803130816C521259446 @default.
- W2803130816 hasConceptScore W2803130816C559116025 @default.
- W2803130816 hasConceptScore W2803130816C82142266 @default.
- W2803130816 hasConceptScore W2803130816C86803240 @default.
- W2803130816 hasLocation W28031308161 @default.
- W2803130816 hasLocation W28031308162 @default.
- W2803130816 hasOpenAccess W2803130816 @default.
- W2803130816 hasPrimaryLocation W28031308161 @default.
- W2803130816 hasRelatedWork W1161874225 @default.
- W2803130816 hasRelatedWork W1499494918 @default.
- W2803130816 hasRelatedWork W1550599941 @default.
- W2803130816 hasRelatedWork W2106314226 @default.
- W2803130816 hasRelatedWork W2114746372 @default.
- W2803130816 hasRelatedWork W2352002076 @default.
- W2803130816 hasRelatedWork W2356591192 @default.
- W2803130816 hasRelatedWork W2359078347 @default.
- W2803130816 hasRelatedWork W2561451072 @default.
- W2803130816 hasRelatedWork W2597076614 @default.
- W2803130816 hasVolume "63" @default.
- W2803130816 isParatext "false" @default.
- W2803130816 isRetracted "false" @default.
- W2803130816 magId "2803130816" @default.
- W2803130816 workType "article" @default.