Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803147477> ?p ?o ?g. }
- W2803147477 endingPage "138" @default.
- W2803147477 startingPage "124" @default.
- W2803147477 abstract "In order to determine the controls on the reflectance spectra of hydrated carbonaceous chondrites, reflectance spectra were measured for a series of samples with well-determined mineralogy, water-content, and thermal history. This includes 5 CR chondrites, 11 CM chondrites, and 7 thermally metamorphosed CM chondrites. These samples were characterized over the 0.35–150 µm range by reflectance spectroscopy in order to cover the full spectral range accessible from ground based observation, and that will be determined in the near-future by the Hayabusa-2 and Osiris-REx missions. While spectra show absorption features shortward of 35 µm, no strong absorption bands were identified in this suite of samples longward of 35 µm. This work shows that the 0.7-µm band observed in hydrated carbonaceous chondrites is correlated with the total water content as well as with the band depth at 2.7 µm, confirming the suggestion that they are related to Mg-rich, Fe-bearing phyllosilicates. A feature at 2.3 µm, diagnostic of such phyllosilicates was found for all samples with a detectable 0.7-µm band, also indicative of Mg-rich phyllosilicates. A strong variability is found in the shape of the 3-µm band among CM chondrites, and between CM, CR and thermally metamorphosed CM chondrites. Heavily altered CM chondrites show a single strong band around 2.72 µm while more thermally metamorphosed CM samples show an absorption band at higher wavelength. The CR chondrite GRO 95577 has a 3-µm feature very similar to those of extensively altered CM chondrites while other CR chondrite rather shows goethite-like signatures (possibly due to terrestrial weathering of metals). Thermally metamorphosed CM chondrites all have 3-µm features, which are not purely due to terrestrial adsorbed water. The band shape ranges from heavily altered CM-like to goethite-like. The overall reflectance was found to be significantly higher for CR chondrites than for CM chondrites. This is also true for the hydrated CR chondrite GRO 95577 whose reflectance spectrum is almost identical to spectra obtained for CM chondrites except that it is brighter by about 40% in the visible. Another possibility to distinguish hydrated CM from hydrated CR chondrites is to use the combination of band depths at 0.7 and 2.3 µm. When comparing the spectra obtained with Cg and Cgh spectral end member, it is found that the band depth determined for hydrated chondrites (0.7 and 2.3 µm) are always higher than calculated for these spectral endmembers. If one considers only asteroids with unambiguous hydration detection, band depth at 0.7 µm is of similar value to those measured for hydrated carbonaceous chondrites." @default.
- W2803147477 created "2018-06-01" @default.
- W2803147477 creator A5016578821 @default.
- W2803147477 creator A5039478727 @default.
- W2803147477 creator A5055026701 @default.
- W2803147477 creator A5061187447 @default.
- W2803147477 creator A5063118619 @default.
- W2803147477 creator A5065396230 @default.
- W2803147477 creator A5082819947 @default.
- W2803147477 date "2018-10-01" @default.
- W2803147477 modified "2023-10-17" @default.
- W2803147477 title "What is controlling the reflectance spectra (0.35–150 µm) of hydrated (and dehydrated) carbonaceous chondrites?" @default.
- W2803147477 cites W1508544066 @default.
- W2803147477 cites W1866539536 @default.
- W2803147477 cites W1969174424 @default.
- W2803147477 cites W1971420722 @default.
- W2803147477 cites W1975092623 @default.
- W2803147477 cites W1977176399 @default.
- W2803147477 cites W1986130170 @default.
- W2803147477 cites W1986340820 @default.
- W2803147477 cites W1988961387 @default.
- W2803147477 cites W1992083487 @default.
- W2803147477 cites W2007133371 @default.
- W2803147477 cites W2015402648 @default.
- W2803147477 cites W2017998168 @default.
- W2803147477 cites W2019706429 @default.
- W2803147477 cites W2030589668 @default.
- W2803147477 cites W2033688233 @default.
- W2803147477 cites W2043597651 @default.
- W2803147477 cites W2045909037 @default.
- W2803147477 cites W2051374087 @default.
- W2803147477 cites W2057335315 @default.
- W2803147477 cites W2057409261 @default.
- W2803147477 cites W2059461957 @default.
- W2803147477 cites W2060672893 @default.
- W2803147477 cites W2063829852 @default.
- W2803147477 cites W2065941794 @default.
- W2803147477 cites W2071786271 @default.
- W2803147477 cites W2075910498 @default.
- W2803147477 cites W2085879809 @default.
- W2803147477 cites W2086227420 @default.
- W2803147477 cites W2087206188 @default.
- W2803147477 cites W2089914286 @default.
- W2803147477 cites W2091537829 @default.
- W2803147477 cites W2099812617 @default.
- W2803147477 cites W2114062577 @default.
- W2803147477 cites W2116964719 @default.
- W2803147477 cites W2118120445 @default.
- W2803147477 cites W2118353732 @default.
- W2803147477 cites W2128448598 @default.
- W2803147477 cites W2137856485 @default.
- W2803147477 cites W2158185007 @default.
- W2803147477 cites W2160816237 @default.
- W2803147477 cites W2192394225 @default.
- W2803147477 cites W2287671453 @default.
- W2803147477 cites W2339828972 @default.
- W2803147477 cites W2419790388 @default.
- W2803147477 cites W2479719499 @default.
- W2803147477 cites W2561217973 @default.
- W2803147477 cites W2580207496 @default.
- W2803147477 cites W4211021246 @default.
- W2803147477 cites W4211069103 @default.
- W2803147477 cites W4246069094 @default.
- W2803147477 cites W4300934083 @default.
- W2803147477 doi "https://doi.org/10.1016/j.icarus.2018.05.010" @default.
- W2803147477 hasPublicationYear "2018" @default.
- W2803147477 type Work @default.
- W2803147477 sameAs 2803147477 @default.
- W2803147477 citedByCount "30" @default.
- W2803147477 countsByYear W28031474772018 @default.
- W2803147477 countsByYear W28031474772019 @default.
- W2803147477 countsByYear W28031474772020 @default.
- W2803147477 countsByYear W28031474772021 @default.
- W2803147477 countsByYear W28031474772022 @default.
- W2803147477 countsByYear W28031474772023 @default.
- W2803147477 crossrefType "journal-article" @default.
- W2803147477 hasAuthorship W2803147477A5016578821 @default.
- W2803147477 hasAuthorship W2803147477A5039478727 @default.
- W2803147477 hasAuthorship W2803147477A5055026701 @default.
- W2803147477 hasAuthorship W2803147477A5061187447 @default.
- W2803147477 hasAuthorship W2803147477A5063118619 @default.
- W2803147477 hasAuthorship W2803147477A5065396230 @default.
- W2803147477 hasAuthorship W2803147477A5082819947 @default.
- W2803147477 hasConcept C107872376 @default.
- W2803147477 hasConcept C113196181 @default.
- W2803147477 hasConcept C116862484 @default.
- W2803147477 hasConcept C120665830 @default.
- W2803147477 hasConcept C121332964 @default.
- W2803147477 hasConcept C125287762 @default.
- W2803147477 hasConcept C127313418 @default.
- W2803147477 hasConcept C1276947 @default.
- W2803147477 hasConcept C130635790 @default.
- W2803147477 hasConcept C159985019 @default.
- W2803147477 hasConcept C185592680 @default.
- W2803147477 hasConcept C191274033 @default.
- W2803147477 hasConcept C192562407 @default.
- W2803147477 hasConcept C199289684 @default.
- W2803147477 hasConcept C32891209 @default.