Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803155746> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2803155746 abstract "Over the past two decades, tsunami have been the cause of 33% of total deaths and 35% of total economic losses due to natural disasters globally, and currently 6 out of 10 of the most populous megacities in the world are at risk of being severely affected by tsunami. Quantifying tsunami risk is therefore centrally important for land use and emergency planning in the DRR sector, for human and financial loss estimation in the insurance sector, and for performance-based design in the engineering sector. Tsunami fragility functions are statistical models that relate a measure of tsunami intensity (e.g. inundation depth) to probabilities of damage exceedance for a number of damage states, and form a key component of tsunami risk models. This thesis presents improved derivation methods for empirical fragility functions (those derived from observed damage data from past tsunami), and research towards methodologies for deriving analytical fragility functions (those constructed from structural analysis in the absence of past damage data). First, a critical review of the literature related to the prediction of building damage due to tsunami is presented. This review highlights that it is unclear which of the many available statistical methods available provide optimal empirical fragility functions. It is also seen that analytical methods are required for damage prediction in the vast majority of at-risk areas, however few such functions exist. Hence tsunami loads on buildings and methods of structural analysis under tsunami loading are critically reviewed so as to identify and justify the loading and analysis assumptions to be employed throughout this thesis. A methodology for deriving optimal empirical tsunami fragility functions for a given dataset is then developed and demonstrated using a unique, disaggregated building damage dataset from the 2011 Japan Tsunami. The proposed methodology identifies the key Tsunami Intensity Measures (TIMs) and improved statistical methods to be used for fragility function derivation. A number of techniques novel in the field of empirical fragility function derivation are introduced: Multiple Imputation, K-fold Cross-Validation, and semi-parametric models. Furthermore, a preliminary methodology is also presented for quantifying debris-related effects on fragility functions. Methods for structural analysis for the derivation of analytical fragility functions are then developed. First an investigation is carried out on how time-dependent effects, ductility and overstrength (a structure’s ability tomaintain a load greater than its yield value) affect structural damage analysis. This is then extended to develop a simplified method for estimating tsunami-induced structural damage under tsunami loading, suitable for use in the large number of analyses required to derive analytical fragility functions of populations of buildings. By introducing advanced methods for selecting optimal TIMs and statistical models, and by furthering the field of structural analysis under tsunami loading, this research has the potential to influence how both empirical and analytical tsunami fragility curves are constructed in the future." @default.
- W2803155746 created "2018-06-01" @default.
- W2803155746 creator A5042634624 @default.
- W2803155746 date "2018-04-28" @default.
- W2803155746 modified "2023-09-24" @default.
- W2803155746 title "Tsunami Damage Prediction for Buildings: Development of Methods for Empirical and Analytical Fragility Function Derivation" @default.
- W2803155746 hasPublicationYear "2018" @default.
- W2803155746 type Work @default.
- W2803155746 sameAs 2803155746 @default.
- W2803155746 citedByCount "0" @default.
- W2803155746 crossrefType "dissertation" @default.
- W2803155746 hasAuthorship W2803155746A5042634624 @default.
- W2803155746 hasConcept C112930515 @default.
- W2803155746 hasConcept C127040729 @default.
- W2803155746 hasConcept C127413603 @default.
- W2803155746 hasConcept C136264566 @default.
- W2803155746 hasConcept C14036430 @default.
- W2803155746 hasConcept C144133560 @default.
- W2803155746 hasConcept C147789679 @default.
- W2803155746 hasConcept C153294291 @default.
- W2803155746 hasConcept C162324750 @default.
- W2803155746 hasConcept C166566181 @default.
- W2803155746 hasConcept C185592680 @default.
- W2803155746 hasConcept C205649164 @default.
- W2803155746 hasConcept C77595967 @default.
- W2803155746 hasConcept C78458016 @default.
- W2803155746 hasConcept C80191262 @default.
- W2803155746 hasConcept C86803240 @default.
- W2803155746 hasConceptScore W2803155746C112930515 @default.
- W2803155746 hasConceptScore W2803155746C127040729 @default.
- W2803155746 hasConceptScore W2803155746C127413603 @default.
- W2803155746 hasConceptScore W2803155746C136264566 @default.
- W2803155746 hasConceptScore W2803155746C14036430 @default.
- W2803155746 hasConceptScore W2803155746C144133560 @default.
- W2803155746 hasConceptScore W2803155746C147789679 @default.
- W2803155746 hasConceptScore W2803155746C153294291 @default.
- W2803155746 hasConceptScore W2803155746C162324750 @default.
- W2803155746 hasConceptScore W2803155746C166566181 @default.
- W2803155746 hasConceptScore W2803155746C185592680 @default.
- W2803155746 hasConceptScore W2803155746C205649164 @default.
- W2803155746 hasConceptScore W2803155746C77595967 @default.
- W2803155746 hasConceptScore W2803155746C78458016 @default.
- W2803155746 hasConceptScore W2803155746C80191262 @default.
- W2803155746 hasConceptScore W2803155746C86803240 @default.
- W2803155746 hasLocation W28031557461 @default.
- W2803155746 hasOpenAccess W2803155746 @default.
- W2803155746 hasPrimaryLocation W28031557461 @default.
- W2803155746 hasRelatedWork W1899235095 @default.
- W2803155746 hasRelatedWork W1912727951 @default.
- W2803155746 hasRelatedWork W1913739036 @default.
- W2803155746 hasRelatedWork W1973085665 @default.
- W2803155746 hasRelatedWork W1990147684 @default.
- W2803155746 hasRelatedWork W2002760954 @default.
- W2803155746 hasRelatedWork W2297929111 @default.
- W2803155746 hasRelatedWork W2338338635 @default.
- W2803155746 hasRelatedWork W2593922937 @default.
- W2803155746 hasRelatedWork W2604292161 @default.
- W2803155746 hasRelatedWork W2895449663 @default.
- W2803155746 hasRelatedWork W2897765118 @default.
- W2803155746 hasRelatedWork W2909012498 @default.
- W2803155746 hasRelatedWork W3009288277 @default.
- W2803155746 hasRelatedWork W3033665448 @default.
- W2803155746 hasRelatedWork W3035732938 @default.
- W2803155746 hasRelatedWork W3127310820 @default.
- W2803155746 hasRelatedWork W3191462713 @default.
- W2803155746 hasRelatedWork W2133541750 @default.
- W2803155746 hasRelatedWork W2494491558 @default.
- W2803155746 isParatext "false" @default.
- W2803155746 isRetracted "false" @default.
- W2803155746 magId "2803155746" @default.
- W2803155746 workType "dissertation" @default.