Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803197787> ?p ?o ?g. }
- W2803197787 endingPage "327" @default.
- W2803197787 startingPage "317" @default.
- W2803197787 abstract "A large factor contributing to the uncertainties associated with sector specific anthropogenic methane emissions is the lack of available methods and data to reliably discriminate the different production processes. In this study, a variety of source apportionment techniques were investigated and developed to improve CH4 apportionment for co-located CH4 sources. The goal was to distinguish emissions from different systems at a mid-stream natural gas (NG) site (compressor station). Continuous measurements of atmospheric CH4 and co-emitted volatile organic compounds (VOCs) were analysed using Principle Component Analysis (PCA) and Positive Matrix Factorisation (PMF) receptor models. After sensitivity studies, significant extensions were made to the classical PCA, (Monte Carlo Absolute PCA ‘MC-APCA’ and Monte Carlo moving Absolute PCA ‘MC-mAPCA’) to better suit this application. Results from the receptor models are compared and combined with isotopic analysis, examining both long and short-term temporal variations. This work determined MC-APCA and PMF to be the most appropriate techniques for the long-term analysis of dominant sources; according to MC-mAPCA, this was identified to be 77.5 ± 0.6% natural gas, while 66% of the remaining variability was associated with traffic-related proxies. Techniques such as the moving Miller-Tans method for isotopic source identification and MC-mAPCA gave an insight into the short-term variability of source composition. During most CH4 enhancement periods, δ13CH4 sources range from −40‰ to −45‰, while MC-mAPCA typically show methane to ethane ratios of 4%–8%, confirming the prevalence of NG emissions. Both techniques identified CH4 enhancements from intermittently contributing sources (in this case a ruminant source characterised by δ13CH4 -62 ± 3‰ and 0% C2H6:CH4), and differentiate small fluctuations in NG source composition. Overall, the best method to identify CH4 sources from atmospheric local measurements remains strongly dependant on the characteristics of said source. The campaign investigated here required sensitive analysis as it was predominantly single sourced, and focussed on the identification of two gas streams. In such a case, it was found that a combination of old and novel techniques provide the greatest information on the characteristics of CH4 sources and gives confidence in the results." @default.
- W2803197787 created "2018-06-01" @default.
- W2803197787 creator A5002276197 @default.
- W2803197787 creator A5003073926 @default.
- W2803197787 creator A5011040223 @default.
- W2803197787 creator A5029708351 @default.
- W2803197787 creator A5029927175 @default.
- W2803197787 creator A5034272516 @default.
- W2803197787 date "2018-08-01" @default.
- W2803197787 modified "2023-09-24" @default.
- W2803197787 title "Can we separate industrial CH4 emission sources from atmospheric observations? - A test case for carbon isotopes, PMF and enhanced APCA" @default.
- W2803197787 cites W1908619978 @default.
- W2803197787 cites W1963659346 @default.
- W2803197787 cites W1973866587 @default.
- W2803197787 cites W1974724481 @default.
- W2803197787 cites W1990385457 @default.
- W2803197787 cites W1990927138 @default.
- W2803197787 cites W2004134124 @default.
- W2803197787 cites W2007368397 @default.
- W2803197787 cites W2010047551 @default.
- W2803197787 cites W2012619539 @default.
- W2803197787 cites W2019627130 @default.
- W2803197787 cites W2028128061 @default.
- W2803197787 cites W2030097685 @default.
- W2803197787 cites W2037570227 @default.
- W2803197787 cites W2037996157 @default.
- W2803197787 cites W2040411940 @default.
- W2803197787 cites W2042308548 @default.
- W2803197787 cites W2044898915 @default.
- W2803197787 cites W2046252407 @default.
- W2803197787 cites W2053102814 @default.
- W2803197787 cites W2076549499 @default.
- W2803197787 cites W2077668719 @default.
- W2803197787 cites W2078684101 @default.
- W2803197787 cites W2079512923 @default.
- W2803197787 cites W2082298872 @default.
- W2803197787 cites W2084951544 @default.
- W2803197787 cites W2101789637 @default.
- W2803197787 cites W2102909828 @default.
- W2803197787 cites W2132250747 @default.
- W2803197787 cites W2132835654 @default.
- W2803197787 cites W2140747171 @default.
- W2803197787 cites W2143016833 @default.
- W2803197787 cites W2158711208 @default.
- W2803197787 cites W2160639304 @default.
- W2803197787 cites W2170580863 @default.
- W2803197787 cites W2273778576 @default.
- W2803197787 cites W2319503479 @default.
- W2803197787 cites W2321757161 @default.
- W2803197787 cites W2323729925 @default.
- W2803197787 cites W2330796059 @default.
- W2803197787 cites W2342551299 @default.
- W2803197787 cites W2427928079 @default.
- W2803197787 cites W2473790476 @default.
- W2803197787 cites W2499461527 @default.
- W2803197787 cites W2564065614 @default.
- W2803197787 cites W2565012923 @default.
- W2803197787 cites W2685447039 @default.
- W2803197787 cites W629939553 @default.
- W2803197787 doi "https://doi.org/10.1016/j.atmosenv.2018.05.004" @default.
- W2803197787 hasPublicationYear "2018" @default.
- W2803197787 type Work @default.
- W2803197787 sameAs 2803197787 @default.
- W2803197787 citedByCount "8" @default.
- W2803197787 countsByYear W28031977872019 @default.
- W2803197787 countsByYear W28031977872020 @default.
- W2803197787 countsByYear W28031977872021 @default.
- W2803197787 countsByYear W28031977872022 @default.
- W2803197787 crossrefType "journal-article" @default.
- W2803197787 hasAuthorship W2803197787A5002276197 @default.
- W2803197787 hasAuthorship W2803197787A5003073926 @default.
- W2803197787 hasAuthorship W2803197787A5011040223 @default.
- W2803197787 hasAuthorship W2803197787A5029708351 @default.
- W2803197787 hasAuthorship W2803197787A5029927175 @default.
- W2803197787 hasAuthorship W2803197787A5034272516 @default.
- W2803197787 hasConcept C105795698 @default.
- W2803197787 hasConcept C111368507 @default.
- W2803197787 hasConcept C127313418 @default.
- W2803197787 hasConcept C17744445 @default.
- W2803197787 hasConcept C178790620 @default.
- W2803197787 hasConcept C185592680 @default.
- W2803197787 hasConcept C19499675 @default.
- W2803197787 hasConcept C199539241 @default.
- W2803197787 hasConcept C27438332 @default.
- W2803197787 hasConcept C2778337684 @default.
- W2803197787 hasConcept C33923547 @default.
- W2803197787 hasConcept C39432304 @default.
- W2803197787 hasConcept C47737302 @default.
- W2803197787 hasConcept C516920438 @default.
- W2803197787 hasConcept C59427239 @default.
- W2803197787 hasConcept C91586092 @default.
- W2803197787 hasConceptScore W2803197787C105795698 @default.
- W2803197787 hasConceptScore W2803197787C111368507 @default.
- W2803197787 hasConceptScore W2803197787C127313418 @default.
- W2803197787 hasConceptScore W2803197787C17744445 @default.
- W2803197787 hasConceptScore W2803197787C178790620 @default.
- W2803197787 hasConceptScore W2803197787C185592680 @default.
- W2803197787 hasConceptScore W2803197787C19499675 @default.