Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803201508> ?p ?o ?g. }
- W2803201508 endingPage "24" @default.
- W2803201508 startingPage "13" @default.
- W2803201508 abstract "Abstract Big data created by social media and mobile networks provide an exceptional opportunity to mine valuable insights from them. This information is harnessed by business entities to measure the level of customer satisfaction but its application in disaster response is still in its inflection point. Social networks are increasingly used for emergency communications and help related requests. During disaster situations, such emergency requests need to be mined from the pool of big data for providing timely help. Though government organizations and emergency responders work together through their respective national disaster response framework, the sentiment of the affected people during and after the disaster determines the success of the disaster response and recovery process. In this paper, we propose a big data driven approach for disaster response through sentiment analysis. The proposed model collects disaster data from social networks and categorize them according to the needs of the affected people. The categorized disaster data are classified through machine learning algorithm for analyzing the sentiment of the people. Various features like, parts of speech and lexicon are analyzed to identify the best classification strategy for disaster data. The results show that lexicon based approach is suitable for analyzing the needs of the people during disaster. The practical implication of the proposed methodology is the real-time categorization and classification of social media big data for disaster response and recovery. This analysis helps the emergency responders and rescue personnel to develop better strategies for effective information management of the rapidly changing disaster environment." @default.
- W2803201508 created "2018-06-01" @default.
- W2803201508 creator A5010220896 @default.
- W2803201508 creator A5025735815 @default.
- W2803201508 creator A5059322639 @default.
- W2803201508 date "2018-10-01" @default.
- W2803201508 modified "2023-10-11" @default.
- W2803201508 title "Big data analytics for disaster response and recovery through sentiment analysis" @default.
- W2803201508 cites W134292135 @default.
- W2803201508 cites W1569507287 @default.
- W2803201508 cites W165616942 @default.
- W2803201508 cites W16693889 @default.
- W2803201508 cites W1885489097 @default.
- W2803201508 cites W1974097091 @default.
- W2803201508 cites W1978712750 @default.
- W2803201508 cites W1986187360 @default.
- W2803201508 cites W1990474689 @default.
- W2803201508 cites W1994645462 @default.
- W2803201508 cites W2002943402 @default.
- W2803201508 cites W2005192766 @default.
- W2803201508 cites W2022427793 @default.
- W2803201508 cites W2040467972 @default.
- W2803201508 cites W2079823081 @default.
- W2803201508 cites W2080549699 @default.
- W2803201508 cites W2081212507 @default.
- W2803201508 cites W2116619054 @default.
- W2803201508 cites W2134809483 @default.
- W2803201508 cites W2147876157 @default.
- W2803201508 cites W2154444445 @default.
- W2803201508 cites W2156378452 @default.
- W2803201508 cites W2156652490 @default.
- W2803201508 cites W2166202924 @default.
- W2803201508 cites W2166706824 @default.
- W2803201508 cites W2261525379 @default.
- W2803201508 cites W2275533672 @default.
- W2803201508 cites W2401829318 @default.
- W2803201508 cites W2465701822 @default.
- W2803201508 cites W2469539430 @default.
- W2803201508 cites W2521720213 @default.
- W2803201508 cites W2575664305 @default.
- W2803201508 cites W2602226862 @default.
- W2803201508 cites W2761561877 @default.
- W2803201508 cites W384201942 @default.
- W2803201508 cites W4211186029 @default.
- W2803201508 doi "https://doi.org/10.1016/j.ijinfomgt.2018.05.004" @default.
- W2803201508 hasPublicationYear "2018" @default.
- W2803201508 type Work @default.
- W2803201508 sameAs 2803201508 @default.
- W2803201508 citedByCount "222" @default.
- W2803201508 countsByYear W28032015082018 @default.
- W2803201508 countsByYear W28032015082019 @default.
- W2803201508 countsByYear W28032015082020 @default.
- W2803201508 countsByYear W28032015082021 @default.
- W2803201508 countsByYear W28032015082022 @default.
- W2803201508 countsByYear W28032015082023 @default.
- W2803201508 crossrefType "journal-article" @default.
- W2803201508 hasAuthorship W2803201508A5010220896 @default.
- W2803201508 hasAuthorship W2803201508A5025735815 @default.
- W2803201508 hasAuthorship W2803201508A5059322639 @default.
- W2803201508 hasConcept C124101348 @default.
- W2803201508 hasConcept C175801342 @default.
- W2803201508 hasConcept C17744445 @default.
- W2803201508 hasConcept C199539241 @default.
- W2803201508 hasConcept C204321447 @default.
- W2803201508 hasConcept C2522767166 @default.
- W2803201508 hasConcept C3018653863 @default.
- W2803201508 hasConcept C41008148 @default.
- W2803201508 hasConcept C62555980 @default.
- W2803201508 hasConcept C66402592 @default.
- W2803201508 hasConcept C75684735 @default.
- W2803201508 hasConcept C79158427 @default.
- W2803201508 hasConceptScore W2803201508C124101348 @default.
- W2803201508 hasConceptScore W2803201508C175801342 @default.
- W2803201508 hasConceptScore W2803201508C17744445 @default.
- W2803201508 hasConceptScore W2803201508C199539241 @default.
- W2803201508 hasConceptScore W2803201508C204321447 @default.
- W2803201508 hasConceptScore W2803201508C2522767166 @default.
- W2803201508 hasConceptScore W2803201508C3018653863 @default.
- W2803201508 hasConceptScore W2803201508C41008148 @default.
- W2803201508 hasConceptScore W2803201508C62555980 @default.
- W2803201508 hasConceptScore W2803201508C66402592 @default.
- W2803201508 hasConceptScore W2803201508C75684735 @default.
- W2803201508 hasConceptScore W2803201508C79158427 @default.
- W2803201508 hasLocation W28032015081 @default.
- W2803201508 hasOpenAccess W2803201508 @default.
- W2803201508 hasPrimaryLocation W28032015081 @default.
- W2803201508 hasRelatedWork W2337265393 @default.
- W2803201508 hasRelatedWork W2508885301 @default.
- W2803201508 hasRelatedWork W2555750261 @default.
- W2803201508 hasRelatedWork W2777139086 @default.
- W2803201508 hasRelatedWork W2803201508 @default.
- W2803201508 hasRelatedWork W2885772528 @default.
- W2803201508 hasRelatedWork W2948780479 @default.
- W2803201508 hasRelatedWork W3046252353 @default.
- W2803201508 hasRelatedWork W3207762418 @default.
- W2803201508 hasRelatedWork W2551093110 @default.
- W2803201508 hasVolume "42" @default.
- W2803201508 isParatext "false" @default.