Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803202079> ?p ?o ?g. }
- W2803202079 endingPage "1464" @default.
- W2803202079 startingPage "1455" @default.
- W2803202079 abstract "It is a textbook knowledge that charges of the same polarity repel each other. For two monovalent ions in the gas phase at a close contact this repulsive interaction amounts to hundreds of kilojoules per mole. In aqueous solutions, however, this Coulomb repulsion is strongly attenuated by a factor equal to the dielectric constant of the medium. The residual repulsion, which now amounts only to units of kilojoules per mole, may be in principle offset by attractive interactions. Probably the smallest cationic pair, where a combination of dispersion and cavitation forces overwhelms the Coulomb repulsion, consists of two guanidinium ions in water. Indeed, by a combination of molecular dynamics with electronic structure calculations and electrophoretic, as well as spectroscopic, experiments, we have demonstrated that aqueous guanidinium cations form (weakly) thermodynamically stable like-charge ion pairs. The importance of pairing of guanidinium cations in aqueous solutions goes beyond a mere physical curiosity, since it has significant biochemical implications. Guanidinium chloride is known to be an efficient and flexible protein denaturant. This is due to the ability of the orientationally amphiphilic guanidinium cations to disrupt various secondary structural motifs of proteins by pairing promiscuously with both hydrophobic and hydrophilic groups, including guanidinium-containing side chains of arginines. The fact that the cationic guanidinium moiety forms the dominant part of the arginine side chain implies that the like-charge ion pairing may also play a role for interactions between peptides and proteins. Indeed, arginine-arginine pairing has been frequently found in structural protein databases. In particular, when strengthened by a presence of negatively charged glutamate, aspartate, or C-terminal carboxylic groups, this binding motif helps to stabilize peptide or protein dimers and is also found in or near active sites of several enzymes. The like-charge pairing of the guanidinium side-chain groups may also hold the key to the understanding of the arginine magic, that is, the extraordinary ability of arginine-rich polypeptides to passively penetrate across cellular membranes. Unlike polylysines, which are also highly cationic but lack the ease in crossing membranes, polyarginines do not exhibit mutual repulsion. Instead, they accumulate at the membrane, weaken it, and might eventually cross in a concerted, train-like manner. This behavior of arginine-rich cell penetrating peptides can be exploited when devising smart strategies how to deliver in a targeted way molecular cargos into the cell." @default.
- W2803202079 created "2018-06-01" @default.
- W2803202079 creator A5015765522 @default.
- W2803202079 creator A5039739336 @default.
- W2803202079 creator A5049285058 @default.
- W2803202079 creator A5052083864 @default.
- W2803202079 creator A5063109605 @default.
- W2803202079 creator A5067862645 @default.
- W2803202079 creator A5068721769 @default.
- W2803202079 date "2018-05-25" @default.
- W2803202079 modified "2023-10-12" @default.
- W2803202079 title "Arginine “Magic”: Guanidinium Like-Charge Ion Pairing from Aqueous Salts to Cell Penetrating Peptides" @default.
- W2803202079 cites W1196153924 @default.
- W2803202079 cites W1784419243 @default.
- W2803202079 cites W1819176638 @default.
- W2803202079 cites W1964579868 @default.
- W2803202079 cites W1965467605 @default.
- W2803202079 cites W1966846605 @default.
- W2803202079 cites W1967820830 @default.
- W2803202079 cites W1967847890 @default.
- W2803202079 cites W1970590601 @default.
- W2803202079 cites W1971724949 @default.
- W2803202079 cites W1973521187 @default.
- W2803202079 cites W1974456685 @default.
- W2803202079 cites W1977324916 @default.
- W2803202079 cites W1978195452 @default.
- W2803202079 cites W1982709972 @default.
- W2803202079 cites W1987197378 @default.
- W2803202079 cites W1989945146 @default.
- W2803202079 cites W1995961820 @default.
- W2803202079 cites W2006100672 @default.
- W2803202079 cites W2008482870 @default.
- W2803202079 cites W2011806241 @default.
- W2803202079 cites W2013317256 @default.
- W2803202079 cites W2013949289 @default.
- W2803202079 cites W2032250529 @default.
- W2803202079 cites W2055154757 @default.
- W2803202079 cites W2055704368 @default.
- W2803202079 cites W2061773754 @default.
- W2803202079 cites W2068744384 @default.
- W2803202079 cites W2070521942 @default.
- W2803202079 cites W2085065303 @default.
- W2803202079 cites W2089712488 @default.
- W2803202079 cites W2090285118 @default.
- W2803202079 cites W2094895270 @default.
- W2803202079 cites W2111994795 @default.
- W2803202079 cites W2117626874 @default.
- W2803202079 cites W2123650819 @default.
- W2803202079 cites W2125450037 @default.
- W2803202079 cites W2146957568 @default.
- W2803202079 cites W2157327967 @default.
- W2803202079 cites W2162479798 @default.
- W2803202079 cites W2165689848 @default.
- W2803202079 cites W2215919791 @default.
- W2803202079 cites W2285099499 @default.
- W2803202079 cites W2291986300 @default.
- W2803202079 cites W2314373865 @default.
- W2803202079 cites W2316761900 @default.
- W2803202079 cites W2318039949 @default.
- W2803202079 cites W2329193604 @default.
- W2803202079 cites W2331743023 @default.
- W2803202079 cites W2334906073 @default.
- W2803202079 cites W2413407279 @default.
- W2803202079 cites W2508694614 @default.
- W2803202079 cites W2509062642 @default.
- W2803202079 cites W2515429898 @default.
- W2803202079 cites W2756128996 @default.
- W2803202079 cites W2762042556 @default.
- W2803202079 cites W2781823215 @default.
- W2803202079 doi "https://doi.org/10.1021/acs.accounts.8b00098" @default.
- W2803202079 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29799185" @default.
- W2803202079 hasPublicationYear "2018" @default.
- W2803202079 type Work @default.
- W2803202079 sameAs 2803202079 @default.
- W2803202079 citedByCount "116" @default.
- W2803202079 countsByYear W28032020792018 @default.
- W2803202079 countsByYear W28032020792019 @default.
- W2803202079 countsByYear W28032020792020 @default.
- W2803202079 countsByYear W28032020792021 @default.
- W2803202079 countsByYear W28032020792022 @default.
- W2803202079 countsByYear W28032020792023 @default.
- W2803202079 crossrefType "journal-article" @default.
- W2803202079 hasAuthorship W2803202079A5015765522 @default.
- W2803202079 hasAuthorship W2803202079A5039739336 @default.
- W2803202079 hasAuthorship W2803202079A5049285058 @default.
- W2803202079 hasAuthorship W2803202079A5052083864 @default.
- W2803202079 hasAuthorship W2803202079A5063109605 @default.
- W2803202079 hasAuthorship W2803202079A5067862645 @default.
- W2803202079 hasAuthorship W2803202079A5068721769 @default.
- W2803202079 hasBestOaLocation W28032020792 @default.
- W2803202079 hasConcept C121332964 @default.
- W2803202079 hasConcept C14103023 @default.
- W2803202079 hasConcept C145148216 @default.
- W2803202079 hasConcept C147597530 @default.
- W2803202079 hasConcept C159467904 @default.
- W2803202079 hasConcept C166950319 @default.
- W2803202079 hasConcept C178790620 @default.
- W2803202079 hasConcept C181199279 @default.