Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803261454> ?p ?o ?g. }
- W2803261454 abstract "The selective laser sintering (SLS) process or the additive manufacturing (AM) enables the construction of a three-dimensional object through melting and solidification of metal powder. The primary advantage of AM over the conventional process is providing the manufacturing flexibility, especially for highly complicated products. The quality of AM products depends upon various processing parameters such as laser power, laser scanning velocity, laser scanning pattern, layer thickness, and hatch spacing. The improper selection of these parameters would lead to parts with defects, severe distortion, and even cracking. I herein perform the numerical and experimental analysis to investigate the interplay between processing parameters and the defect generation. The analysis aims to resolve issues at two different scales, micro-scale and product-scale. At the micro-scale, while the numerical model is developed to investigate the interaction of the laser and materials in the AM process, its advantages and disadvantages compared to an analytical approach (Rosenthal’s equation), which provides a quicker thermal solution, are thoroughly studied. Additionally, numerical results have been verified by series of experiments. Based on the analysis, it is found that the simultaneous consideration of multiple processing parameters could be achieved using the energy density. Moreover, together with existing criteria, a processing window is numerically developed as a guideline for AM users to avoid common defects at this scale including the lack of fusion, balling effect, and over-melting. Thermal results at a micro-scale are extended as an input to determine the residual stress initiation in AM products. The effect of energy density and substrate temperature on a residual stress magnitude is explored. Results show that the stress magnitude within a layer is a strong function of the substrate temperature, where a higher substrate temperature results in a lower stress. Moreover, the stress formation due to a layer’s addition is studied, in which the stress relaxation at locations away from a top surface is observed. Nevertheless, even though the micro-scale analysis can resolve some common defects in AM, it is not capable of predicting product-scale responses such as residual stress development and entire product’s distortion. As a result, the multiscale modeling platform is developed for the numerical investigation at the product level. Three thermal models at various scales are interactively used to yield an effective thermal development calculation at a product-scale. In addition, the influence of the multiple layers, energy densities and scanning patterns on the residual stress formation has been addressed, which leads to the prediction of the residual stress development during the fabrication. The distortion of products due to the residual stress can be described by the product-scale model. Furthermore, among many processing parameters, the energy input and the scanning length are found to be important factors, which could be controlled to achieve the residual stress reduction in AM products. An optimal choice of a scanning length and energy input can reduce an as-built residual stress magnitude by almost half of typically encountered values. Ultimately, the present work aims to illustrate the integration of the computational method as tools to provide manufacturing qualification for part production by the AM process." @default.
- W2803261454 created "2018-06-01" @default.
- W2803261454 creator A5081758815 @default.
- W2803261454 date "2018-04-01" @default.
- W2803261454 modified "2023-09-25" @default.
- W2803261454 title "Numerical Modeling of Thermal and Mechanical Behaviors in the Selective Laser Sintering of Metals" @default.
- W2803261454 cites W1879497395 @default.
- W2803261454 cites W1920395887 @default.
- W2803261454 cites W195742848 @default.
- W2803261454 cites W1965566695 @default.
- W2803261454 cites W1969646186 @default.
- W2803261454 cites W1973348698 @default.
- W2803261454 cites W1980933335 @default.
- W2803261454 cites W1982639356 @default.
- W2803261454 cites W1984852769 @default.
- W2803261454 cites W1985594223 @default.
- W2803261454 cites W1986131732 @default.
- W2803261454 cites W1988269397 @default.
- W2803261454 cites W1989907113 @default.
- W2803261454 cites W1991083404 @default.
- W2803261454 cites W1992133454 @default.
- W2803261454 cites W1995972389 @default.
- W2803261454 cites W1997531141 @default.
- W2803261454 cites W1997673604 @default.
- W2803261454 cites W2000668752 @default.
- W2803261454 cites W2001174169 @default.
- W2803261454 cites W2006001431 @default.
- W2803261454 cites W2008888231 @default.
- W2803261454 cites W2014521333 @default.
- W2803261454 cites W2014734472 @default.
- W2803261454 cites W2024654735 @default.
- W2803261454 cites W2024853952 @default.
- W2803261454 cites W2028799989 @default.
- W2803261454 cites W2030027388 @default.
- W2803261454 cites W2034490301 @default.
- W2803261454 cites W2055001691 @default.
- W2803261454 cites W2065020070 @default.
- W2803261454 cites W2069204747 @default.
- W2803261454 cites W2070618388 @default.
- W2803261454 cites W2072455331 @default.
- W2803261454 cites W2073563125 @default.
- W2803261454 cites W2075431933 @default.
- W2803261454 cites W2083864719 @default.
- W2803261454 cites W2086694690 @default.
- W2803261454 cites W2089050878 @default.
- W2803261454 cites W2089755190 @default.
- W2803261454 cites W2089922925 @default.
- W2803261454 cites W2090476705 @default.
- W2803261454 cites W2090802450 @default.
- W2803261454 cites W2091447774 @default.
- W2803261454 cites W2102592109 @default.
- W2803261454 cites W2106579940 @default.
- W2803261454 cites W2124839031 @default.
- W2803261454 cites W2125671724 @default.
- W2803261454 cites W2156595172 @default.
- W2803261454 cites W2188211447 @default.
- W2803261454 cites W2197308205 @default.
- W2803261454 cites W2221989233 @default.
- W2803261454 cites W2316606545 @default.
- W2803261454 cites W2340896756 @default.
- W2803261454 cites W2349346577 @default.
- W2803261454 cites W2362792893 @default.
- W2803261454 cites W2394881620 @default.
- W2803261454 cites W2404176907 @default.
- W2803261454 cites W2406320226 @default.
- W2803261454 cites W2408619629 @default.
- W2803261454 cites W2434883779 @default.
- W2803261454 cites W2460354707 @default.
- W2803261454 cites W2467559060 @default.
- W2803261454 cites W2509293859 @default.
- W2803261454 cites W2514027349 @default.
- W2803261454 cites W2528615597 @default.
- W2803261454 cites W2529608938 @default.
- W2803261454 cites W2556012872 @default.
- W2803261454 cites W2563252268 @default.
- W2803261454 cites W2567926709 @default.
- W2803261454 cites W2579529939 @default.
- W2803261454 cites W2610664026 @default.
- W2803261454 cites W2621400967 @default.
- W2803261454 cites W2622805139 @default.
- W2803261454 cites W2750415827 @default.
- W2803261454 cites W2755097489 @default.
- W2803261454 cites W2757669782 @default.
- W2803261454 cites W2759917558 @default.
- W2803261454 cites W2788236707 @default.
- W2803261454 cites W2788498221 @default.
- W2803261454 cites W2943543765 @default.
- W2803261454 cites W2946360002 @default.
- W2803261454 cites W2981037924 @default.
- W2803261454 cites W2982494595 @default.
- W2803261454 cites W3014283786 @default.
- W2803261454 cites W3103067449 @default.
- W2803261454 cites W3204756872 @default.
- W2803261454 cites W648965419 @default.
- W2803261454 cites W751716341 @default.
- W2803261454 cites W947063803 @default.
- W2803261454 doi "https://doi.org/10.1184/r1/6720896.v1" @default.
- W2803261454 hasPublicationYear "2018" @default.
- W2803261454 type Work @default.
- W2803261454 sameAs 2803261454 @default.