Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803297368> ?p ?o ?g. }
- W2803297368 endingPage "178" @default.
- W2803297368 startingPage "160" @default.
- W2803297368 abstract "It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision." @default.
- W2803297368 created "2018-06-01" @default.
- W2803297368 creator A5005468785 @default.
- W2803297368 creator A5006741407 @default.
- W2803297368 creator A5039116644 @default.
- W2803297368 creator A5045138697 @default.
- W2803297368 creator A5047497758 @default.
- W2803297368 creator A5056244967 @default.
- W2803297368 creator A5058486170 @default.
- W2803297368 creator A5068950659 @default.
- W2803297368 creator A5086963728 @default.
- W2803297368 creator A5088255632 @default.
- W2803297368 date "2018-08-01" @default.
- W2803297368 modified "2023-10-18" @default.
- W2803297368 title "Retinal adaptation to dim light vision in spectacled caimans ( Caiman crocodilus fuscus ): Analysis of retinal ultrastructure" @default.
- W2803297368 cites W1555728140 @default.
- W2803297368 cites W1965218733 @default.
- W2803297368 cites W1968127700 @default.
- W2803297368 cites W1976969778 @default.
- W2803297368 cites W1978622423 @default.
- W2803297368 cites W1983125572 @default.
- W2803297368 cites W1992037559 @default.
- W2803297368 cites W1992893616 @default.
- W2803297368 cites W1997412757 @default.
- W2803297368 cites W1997513957 @default.
- W2803297368 cites W1997926356 @default.
- W2803297368 cites W2001125990 @default.
- W2803297368 cites W2004339439 @default.
- W2803297368 cites W2011167630 @default.
- W2803297368 cites W2022364091 @default.
- W2803297368 cites W2022937167 @default.
- W2803297368 cites W2024302249 @default.
- W2803297368 cites W2029991783 @default.
- W2803297368 cites W2032105712 @default.
- W2803297368 cites W2033753601 @default.
- W2803297368 cites W2034826604 @default.
- W2803297368 cites W2038443758 @default.
- W2803297368 cites W2040451883 @default.
- W2803297368 cites W2044814521 @default.
- W2803297368 cites W2049920213 @default.
- W2803297368 cites W2054831939 @default.
- W2803297368 cites W2056591072 @default.
- W2803297368 cites W2060226438 @default.
- W2803297368 cites W2062487688 @default.
- W2803297368 cites W2065286153 @default.
- W2803297368 cites W2066485574 @default.
- W2803297368 cites W2070158172 @default.
- W2803297368 cites W2071514658 @default.
- W2803297368 cites W2071918673 @default.
- W2803297368 cites W2076193569 @default.
- W2803297368 cites W2084122933 @default.
- W2803297368 cites W2085322752 @default.
- W2803297368 cites W2088291372 @default.
- W2803297368 cites W2091694742 @default.
- W2803297368 cites W2116745204 @default.
- W2803297368 cites W2121614221 @default.
- W2803297368 cites W2133036212 @default.
- W2803297368 cites W2144949561 @default.
- W2803297368 cites W2145088105 @default.
- W2803297368 cites W2145682195 @default.
- W2803297368 cites W2164634416 @default.
- W2803297368 cites W2289054036 @default.
- W2803297368 cites W2290047651 @default.
- W2803297368 cites W2316945862 @default.
- W2803297368 cites W2346346256 @default.
- W2803297368 cites W2507272058 @default.
- W2803297368 cites W2515704865 @default.
- W2803297368 cites W2913469363 @default.
- W2803297368 cites W4231023928 @default.
- W2803297368 cites W4232753590 @default.
- W2803297368 doi "https://doi.org/10.1016/j.exer.2018.05.006" @default.
- W2803297368 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29753728" @default.
- W2803297368 hasPublicationYear "2018" @default.
- W2803297368 type Work @default.
- W2803297368 sameAs 2803297368 @default.
- W2803297368 citedByCount "15" @default.
- W2803297368 countsByYear W28032973682018 @default.
- W2803297368 countsByYear W28032973682019 @default.
- W2803297368 countsByYear W28032973682020 @default.
- W2803297368 countsByYear W28032973682021 @default.
- W2803297368 countsByYear W28032973682022 @default.
- W2803297368 countsByYear W28032973682023 @default.
- W2803297368 crossrefType "journal-article" @default.
- W2803297368 hasAuthorship W2803297368A5005468785 @default.
- W2803297368 hasAuthorship W2803297368A5006741407 @default.
- W2803297368 hasAuthorship W2803297368A5039116644 @default.
- W2803297368 hasAuthorship W2803297368A5045138697 @default.
- W2803297368 hasAuthorship W2803297368A5047497758 @default.
- W2803297368 hasAuthorship W2803297368A5056244967 @default.
- W2803297368 hasAuthorship W2803297368A5058486170 @default.
- W2803297368 hasAuthorship W2803297368A5068950659 @default.
- W2803297368 hasAuthorship W2803297368A5086963728 @default.
- W2803297368 hasAuthorship W2803297368A5088255632 @default.
- W2803297368 hasBestOaLocation W28032973682 @default.
- W2803297368 hasConcept C105702510 @default.
- W2803297368 hasConcept C120665830 @default.
- W2803297368 hasConcept C121332964 @default.
- W2803297368 hasConcept C169760540 @default.