Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803312419> ?p ?o ?g. }
- W2803312419 endingPage "6052" @default.
- W2803312419 startingPage "6039" @default.
- W2803312419 abstract "Abstract The skill of global climate model (GCM) forecasts is usually indicated by the anomaly correlation between ensemble mean and observation. For GCM forecasts, anomaly correlation does not steadily improve with decreasing lead time but oscillates instead. This paper aims to address the oscillation and illustrate the relationship between anomaly correlation and lead time. We formulate the anomaly correlation of forecasts at different initialization times as a vector and pool anomaly correlation vectors across grid cells in the analysis. We propose two patterns to characterize the spatial and temporal variation of anomaly correlation in the three‐dimensional space of latitude, longitude, and initialization time. The first pattern suggests that the anomaly correlation at different initialization times is at a similar level. The second pattern indicates that the anomaly correlation linearly increases with decreasing lead time. These two patterns are tested using the eigenvectors through principal component analysis. They are first illustrated using the GFDL‐CM2p1‐aer04 forecasts of summer precipitation in China. They are further verified by another nine sets of North‐American Multi‐Model Ensemble (NMME) forecasts. Overall, the first pattern explains more variation than the second pattern. In total, the two patterns explain 42% of the variation of anomaly correlation for CanCM3, 59% for CanCM4, 42% for COLA‐RSMAS‐CCSM3), 45% for COLA‐RSMAS‐CCSM4, 59% for GFDL‐CM2p1, 67% for GFDL‐CM2p1‐aer04, 65% for GFDL‐CM2p5‐FLOR‐A06, 57% for GFDL‐CM2p5‐FLOR‐B01, 48% for NCAR‐CESM1, and 60% for NCEP‐CFSv2. The percentage of explained variation demonstrates the effectiveness of the two patterns as exploratory tools to analyze the predictive performance of GCM forecasts." @default.
- W2803312419 created "2018-06-01" @default.
- W2803312419 creator A5036330031 @default.
- W2803312419 creator A5050247142 @default.
- W2803312419 creator A5052307366 @default.
- W2803312419 creator A5058523490 @default.
- W2803312419 creator A5066350606 @default.
- W2803312419 creator A5068857783 @default.
- W2803312419 date "2018-06-13" @default.
- W2803312419 modified "2023-10-16" @default.
- W2803312419 title "Relating Anomaly Correlation to Lead Time: Principal Component Analysis of NMME Forecasts of Summer Precipitation in China" @default.
- W2803312419 cites W1718036133 @default.
- W2803312419 cites W1789155650 @default.
- W2803312419 cites W1861739753 @default.
- W2803312419 cites W1940491063 @default.
- W2803312419 cites W1942873126 @default.
- W2803312419 cites W1984125303 @default.
- W2803312419 cites W1999924779 @default.
- W2803312419 cites W2006309376 @default.
- W2803312419 cites W2024089565 @default.
- W2803312419 cites W2030116498 @default.
- W2803312419 cites W2034326114 @default.
- W2803312419 cites W2043196564 @default.
- W2803312419 cites W2043607614 @default.
- W2803312419 cites W2053092636 @default.
- W2803312419 cites W2060172488 @default.
- W2803312419 cites W2066532049 @default.
- W2803312419 cites W2074925211 @default.
- W2803312419 cites W2084279619 @default.
- W2803312419 cites W2089468765 @default.
- W2803312419 cites W2099071603 @default.
- W2803312419 cites W2104538715 @default.
- W2803312419 cites W2123264356 @default.
- W2803312419 cites W2133144322 @default.
- W2803312419 cites W2141216009 @default.
- W2803312419 cites W2144668858 @default.
- W2803312419 cites W2148207207 @default.
- W2803312419 cites W2157980636 @default.
- W2803312419 cites W2173094741 @default.
- W2803312419 cites W2176956584 @default.
- W2803312419 cites W2279843294 @default.
- W2803312419 cites W2282277244 @default.
- W2803312419 cites W2290777663 @default.
- W2803312419 cites W2463601549 @default.
- W2803312419 cites W2501149675 @default.
- W2803312419 cites W2506083926 @default.
- W2803312419 cites W2508348866 @default.
- W2803312419 cites W2545094043 @default.
- W2803312419 cites W2550691835 @default.
- W2803312419 cites W2580637162 @default.
- W2803312419 cites W2613941511 @default.
- W2803312419 cites W2735530587 @default.
- W2803312419 cites W2749481055 @default.
- W2803312419 cites W2767747052 @default.
- W2803312419 cites W2889836682 @default.
- W2803312419 cites W4238805501 @default.
- W2803312419 doi "https://doi.org/10.1029/2018jd028267" @default.
- W2803312419 hasPublicationYear "2018" @default.
- W2803312419 type Work @default.
- W2803312419 sameAs 2803312419 @default.
- W2803312419 citedByCount "6" @default.
- W2803312419 countsByYear W28033124192019 @default.
- W2803312419 countsByYear W28033124192020 @default.
- W2803312419 countsByYear W28033124192021 @default.
- W2803312419 countsByYear W28033124192022 @default.
- W2803312419 crossrefType "journal-article" @default.
- W2803312419 hasAuthorship W2803312419A5036330031 @default.
- W2803312419 hasAuthorship W2803312419A5050247142 @default.
- W2803312419 hasAuthorship W2803312419A5052307366 @default.
- W2803312419 hasAuthorship W2803312419A5058523490 @default.
- W2803312419 hasAuthorship W2803312419A5066350606 @default.
- W2803312419 hasAuthorship W2803312419A5068857783 @default.
- W2803312419 hasBestOaLocation W28033124191 @default.
- W2803312419 hasConcept C105795698 @default.
- W2803312419 hasConcept C114466953 @default.
- W2803312419 hasConcept C121332964 @default.
- W2803312419 hasConcept C122523270 @default.
- W2803312419 hasConcept C127313418 @default.
- W2803312419 hasConcept C12997251 @default.
- W2803312419 hasConcept C13280743 @default.
- W2803312419 hasConcept C153874254 @default.
- W2803312419 hasConcept C199360897 @default.
- W2803312419 hasConcept C26873012 @default.
- W2803312419 hasConcept C27438332 @default.
- W2803312419 hasConcept C33923547 @default.
- W2803312419 hasConcept C39432304 @default.
- W2803312419 hasConcept C41008148 @default.
- W2803312419 hasConcept C49204034 @default.
- W2803312419 hasConcept C91586092 @default.
- W2803312419 hasConceptScore W2803312419C105795698 @default.
- W2803312419 hasConceptScore W2803312419C114466953 @default.
- W2803312419 hasConceptScore W2803312419C121332964 @default.
- W2803312419 hasConceptScore W2803312419C122523270 @default.
- W2803312419 hasConceptScore W2803312419C127313418 @default.
- W2803312419 hasConceptScore W2803312419C12997251 @default.
- W2803312419 hasConceptScore W2803312419C13280743 @default.
- W2803312419 hasConceptScore W2803312419C153874254 @default.
- W2803312419 hasConceptScore W2803312419C199360897 @default.