Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803349759> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2803349759 abstract "The standard process of data science tasks is to prepare features inside a database, export them as a denormalized data frame and then apply machine learning algorithms. This process is not optimal for two reasons. First, it requires denormalization of the database that can convert a small data problem into a big data problem. The second shortcoming is that it assumes that the machine learning algorithm is disentangled from the relational model of the problem. That seems to be a serious limitation since the relational model contains very valuable domain expertise. In this paper we explore the use of convex optimization and specifically linear programming, for modelling machine learning algorithms on relational data in an integrated way with data processing operators. We are using SolverBlox, a framework that accepts as an input Datalog code and feeds it into a linear programming solver. We demonstrate the expression of common machine learning algorithms and present use case scenarios where combining data processing with modelling of optimization problems inside a database offers significant advantages." @default.
- W2803349759 created "2018-06-01" @default.
- W2803349759 creator A5007387722 @default.
- W2803349759 creator A5032125662 @default.
- W2803349759 creator A5034623242 @default.
- W2803349759 creator A5039271966 @default.
- W2803349759 date "2018-06-15" @default.
- W2803349759 modified "2023-09-24" @default.
- W2803349759 title "Modelling Machine Learning Algorithms on Relational Data with Datalog" @default.
- W2803349759 cites W1764902476 @default.
- W2803349759 cites W2008865455 @default.
- W2803349759 cites W2044701300 @default.
- W2803349759 cites W2102458936 @default.
- W2803349759 cites W2751532144 @default.
- W2803349759 cites W753617165 @default.
- W2803349759 doi "https://doi.org/10.1145/3209889.3209893" @default.
- W2803349759 hasPublicationYear "2018" @default.
- W2803349759 type Work @default.
- W2803349759 sameAs 2803349759 @default.
- W2803349759 citedByCount "6" @default.
- W2803349759 countsByYear W28033497592019 @default.
- W2803349759 countsByYear W28033497592021 @default.
- W2803349759 countsByYear W28033497592022 @default.
- W2803349759 crossrefType "proceedings-article" @default.
- W2803349759 hasAuthorship W2803349759A5007387722 @default.
- W2803349759 hasAuthorship W2803349759A5032125662 @default.
- W2803349759 hasAuthorship W2803349759A5034623242 @default.
- W2803349759 hasAuthorship W2803349759A5039271966 @default.
- W2803349759 hasConcept C11413529 @default.
- W2803349759 hasConcept C124101348 @default.
- W2803349759 hasConcept C148230440 @default.
- W2803349759 hasConcept C154945302 @default.
- W2803349759 hasConcept C173608175 @default.
- W2803349759 hasConcept C199360897 @default.
- W2803349759 hasConcept C41008148 @default.
- W2803349759 hasConcept C5655090 @default.
- W2803349759 hasConcept C80444323 @default.
- W2803349759 hasConceptScore W2803349759C11413529 @default.
- W2803349759 hasConceptScore W2803349759C124101348 @default.
- W2803349759 hasConceptScore W2803349759C148230440 @default.
- W2803349759 hasConceptScore W2803349759C154945302 @default.
- W2803349759 hasConceptScore W2803349759C173608175 @default.
- W2803349759 hasConceptScore W2803349759C199360897 @default.
- W2803349759 hasConceptScore W2803349759C41008148 @default.
- W2803349759 hasConceptScore W2803349759C5655090 @default.
- W2803349759 hasConceptScore W2803349759C80444323 @default.
- W2803349759 hasLocation W28033497591 @default.
- W2803349759 hasOpenAccess W2803349759 @default.
- W2803349759 hasPrimaryLocation W28033497591 @default.
- W2803349759 hasRelatedWork W1486631852 @default.
- W2803349759 hasRelatedWork W1489674538 @default.
- W2803349759 hasRelatedWork W1502289629 @default.
- W2803349759 hasRelatedWork W1508480023 @default.
- W2803349759 hasRelatedWork W2049263093 @default.
- W2803349759 hasRelatedWork W2079714382 @default.
- W2803349759 hasRelatedWork W2136585164 @default.
- W2803349759 hasRelatedWork W2152805807 @default.
- W2803349759 hasRelatedWork W2740990710 @default.
- W2803349759 hasRelatedWork W2915160390 @default.
- W2803349759 isParatext "false" @default.
- W2803349759 isRetracted "false" @default.
- W2803349759 magId "2803349759" @default.
- W2803349759 workType "article" @default.