Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803373257> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2803373257 endingPage "118" @default.
- W2803373257 startingPage "107" @default.
- W2803373257 abstract "Abstract Many high-dimensional data in computer vision essentially lie in multiple low-dimensional subspaces. Recently developed subspace clustering methods have shown good effectiveness in recovering the underlying low-dimensional subspace structure of high-dimensional data. The state-of-the-art methods show that sparseness and grouping effect of the affinity matrix are important for subspace clustering. The Structured Sparse Subspace Clustering (SSSC) model is a unified optimization framework for learning both the self-representation of the data and their subspace segmentation. But the SSSC only considers structured sparseness property of the affinity matrix. In this work, we define a concept of grouping-effect-within-cluster (GEWC) to group data from the same subspace together. Based on GEWC, we design a new regularization term coupling the self-representation matrix and the segmentation matrix. The new regularization term interactively enforces both to have the expected properties: the segmentation matrix enforces the self-representation coefficient vectors to have large cosine similarity, or GEWC, whenever the data points are drawn from the same subspace and they have the same cluster labels. On the other hand, the self-representation matrix enforces data to have the same cluster labels whenever their self-representation coefficient vectors have large cosine similarity. Incorporating the new penalty into the SSSC model, we present a new unified minimization framework for affinity learning and subspace clustering. The new model considers not only structured sparseness but also GEWC. Experimental results on several commonly used datasets demonstrate that our method outperforms other state-of-the-art methods in revealing the subspace structure of high-dimensional data." @default.
- W2803373257 created "2018-06-01" @default.
- W2803373257 creator A5020220235 @default.
- W2803373257 creator A5045932299 @default.
- W2803373257 creator A5066183581 @default.
- W2803373257 date "2018-11-01" @default.
- W2803373257 modified "2023-10-08" @default.
- W2803373257 title "Structured Sparse Subspace Clustering with Within-Cluster Grouping" @default.
- W2803373257 cites W1533128638 @default.
- W2803373257 cites W1606778734 @default.
- W2803373257 cites W1981458038 @default.
- W2803373257 cites W1993962865 @default.
- W2803373257 cites W1997201895 @default.
- W2803373257 cites W2003361735 @default.
- W2803373257 cites W2013712253 @default.
- W2803373257 cites W2100659887 @default.
- W2803373257 cites W2118578720 @default.
- W2803373257 cites W2121647436 @default.
- W2803373257 cites W2123921160 @default.
- W2803373257 cites W2127928018 @default.
- W2803373257 cites W2132914434 @default.
- W2803373257 cites W2140245639 @default.
- W2803373257 cites W2164931791 @default.
- W2803373257 cites W2165916500 @default.
- W2803373257 cites W2177347332 @default.
- W2803373257 cites W2269947760 @default.
- W2803373257 cites W2503931548 @default.
- W2803373257 cites W2561426102 @default.
- W2803373257 cites W2565938754 @default.
- W2803373257 cites W2588950143 @default.
- W2803373257 cites W3100720754 @default.
- W2803373257 cites W4250657332 @default.
- W2803373257 cites W4251653680 @default.
- W2803373257 cites W4292363360 @default.
- W2803373257 doi "https://doi.org/10.1016/j.patcog.2018.05.020" @default.
- W2803373257 hasPublicationYear "2018" @default.
- W2803373257 type Work @default.
- W2803373257 sameAs 2803373257 @default.
- W2803373257 citedByCount "23" @default.
- W2803373257 countsByYear W28033732572019 @default.
- W2803373257 countsByYear W28033732572020 @default.
- W2803373257 countsByYear W28033732572021 @default.
- W2803373257 countsByYear W28033732572022 @default.
- W2803373257 countsByYear W28033732572023 @default.
- W2803373257 crossrefType "journal-article" @default.
- W2803373257 hasAuthorship W2803373257A5020220235 @default.
- W2803373257 hasAuthorship W2803373257A5045932299 @default.
- W2803373257 hasAuthorship W2803373257A5066183581 @default.
- W2803373257 hasConcept C124101348 @default.
- W2803373257 hasConcept C153180895 @default.
- W2803373257 hasConcept C154945302 @default.
- W2803373257 hasConcept C164866538 @default.
- W2803373257 hasConcept C199360897 @default.
- W2803373257 hasConcept C32834561 @default.
- W2803373257 hasConcept C41008148 @default.
- W2803373257 hasConcept C73555534 @default.
- W2803373257 hasConceptScore W2803373257C124101348 @default.
- W2803373257 hasConceptScore W2803373257C153180895 @default.
- W2803373257 hasConceptScore W2803373257C154945302 @default.
- W2803373257 hasConceptScore W2803373257C164866538 @default.
- W2803373257 hasConceptScore W2803373257C199360897 @default.
- W2803373257 hasConceptScore W2803373257C32834561 @default.
- W2803373257 hasConceptScore W2803373257C41008148 @default.
- W2803373257 hasConceptScore W2803373257C73555534 @default.
- W2803373257 hasFunder F4320321001 @default.
- W2803373257 hasLocation W28033732571 @default.
- W2803373257 hasOpenAccess W2803373257 @default.
- W2803373257 hasPrimaryLocation W28033732571 @default.
- W2803373257 hasRelatedWork W136621464 @default.
- W2803373257 hasRelatedWork W1998938004 @default.
- W2803373257 hasRelatedWork W2016349419 @default.
- W2803373257 hasRelatedWork W2042327336 @default.
- W2803373257 hasRelatedWork W2159633528 @default.
- W2803373257 hasRelatedWork W2321141263 @default.
- W2803373257 hasRelatedWork W2543161807 @default.
- W2803373257 hasRelatedWork W2762837944 @default.
- W2803373257 hasRelatedWork W2888523397 @default.
- W2803373257 hasRelatedWork W2164844972 @default.
- W2803373257 hasVolume "83" @default.
- W2803373257 isParatext "false" @default.
- W2803373257 isRetracted "false" @default.
- W2803373257 magId "2803373257" @default.
- W2803373257 workType "article" @default.