Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803403634> ?p ?o ?g. }
- W2803403634 endingPage "2994" @default.
- W2803403634 startingPage "2983" @default.
- W2803403634 abstract "Abstract. Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals from solar backscatter observations. Surface snow cover presents a significant challenge due to its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, the high reflectance of snow is potentially advantageous for trace gas retrievals. We first examine the implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument for North America. We use a radiative transfer model to examine how an increase in surface reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower troposphere. We find that a substantial fraction (> 50 %) of the TEMPO field of regard can be snow covered in January and that the average sensitivity to the tropospheric NO2 column substantially increases (doubles) when the surface is snow covered.We then evaluate seven existing satellite-derived or reanalysis snow extent products against ground station observations over North America to assess their capability of informing surface conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System (IMS) had the best agreement with ground observations (accuracy of 93 %, precision of 87 %, recall of 83 %). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of MODIS-observed radiances had high precision (90 % for Aqua and Terra), but underestimated the presence of snow (recall of 74 % for Aqua, 75 % for Terra). MAIAC generally outperforms the standard MODIS products (precision of 51 %, recall of 43 % for Aqua; precision of 69 %, recall of 45 % for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83 %) but missed a significant number of snow-covered pixels (recall of 45 %). The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance metrics (accuracy of 91 %, precision of 79 %, recall of 82 %). We use the Fscore, which balances precision and recall, to determine overall product performance (F = 85 %, 82 (82) %, 81 %, 58 %, 46 (54) % for IMS, MAIAC Aqua (Terra), CMC, NISE, MODIS Aqua (Terra), respectively) for providing snow cover information for TEMPO retrievals from solar backscatter observations. We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes in clear-sky conditions across North America in January can increase both the number of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by a factor of 2.7." @default.
- W2803403634 created "2018-06-01" @default.
- W2803403634 creator A5019950252 @default.
- W2803403634 creator A5021452248 @default.
- W2803403634 creator A5081702690 @default.
- W2803403634 creator A5082119227 @default.
- W2803403634 date "2018-05-22" @default.
- W2803403634 modified "2023-10-05" @default.
- W2803403634 title "Assessing snow extent data sets over North America to inform and improve trace gas retrievals from solar backscatter" @default.
- W2803403634 cites W1484885900 @default.
- W2803403634 cites W1556483023 @default.
- W2803403634 cites W1804144495 @default.
- W2803403634 cites W1885577679 @default.
- W2803403634 cites W1964491206 @default.
- W2803403634 cites W1981545676 @default.
- W2803403634 cites W1984176657 @default.
- W2803403634 cites W1990226794 @default.
- W2803403634 cites W2009026858 @default.
- W2803403634 cites W2017720132 @default.
- W2803403634 cites W2018041230 @default.
- W2803403634 cites W2026629099 @default.
- W2803403634 cites W2029604816 @default.
- W2803403634 cites W2036890879 @default.
- W2803403634 cites W2039274523 @default.
- W2803403634 cites W2046199481 @default.
- W2803403634 cites W2051997646 @default.
- W2803403634 cites W2067129339 @default.
- W2803403634 cites W2073399474 @default.
- W2803403634 cites W2075193147 @default.
- W2803403634 cites W2089734853 @default.
- W2803403634 cites W2091678789 @default.
- W2803403634 cites W2091980009 @default.
- W2803403634 cites W2093593677 @default.
- W2803403634 cites W2103782865 @default.
- W2803403634 cites W2106980380 @default.
- W2803403634 cites W2110849583 @default.
- W2803403634 cites W2115147528 @default.
- W2803403634 cites W2126468629 @default.
- W2803403634 cites W2127140037 @default.
- W2803403634 cites W2132797698 @default.
- W2803403634 cites W2133458197 @default.
- W2803403634 cites W2142800341 @default.
- W2803403634 cites W2144898896 @default.
- W2803403634 cites W2151767789 @default.
- W2803403634 cites W2157543045 @default.
- W2803403634 cites W2159666988 @default.
- W2803403634 cites W2165692863 @default.
- W2803403634 cites W2169262944 @default.
- W2803403634 cites W2342583289 @default.
- W2803403634 cites W2546687420 @default.
- W2803403634 cites W2563177019 @default.
- W2803403634 cites W2583061482 @default.
- W2803403634 cites W2584725167 @default.
- W2803403634 cites W4249675481 @default.
- W2803403634 cites W632895101 @default.
- W2803403634 doi "https://doi.org/10.5194/amt-11-2983-2018" @default.
- W2803403634 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6235450" @default.
- W2803403634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30450131" @default.
- W2803403634 hasPublicationYear "2018" @default.
- W2803403634 type Work @default.
- W2803403634 sameAs 2803403634 @default.
- W2803403634 citedByCount "12" @default.
- W2803403634 countsByYear W28034036342019 @default.
- W2803403634 countsByYear W28034036342020 @default.
- W2803403634 countsByYear W28034036342021 @default.
- W2803403634 countsByYear W28034036342022 @default.
- W2803403634 countsByYear W28034036342023 @default.
- W2803403634 crossrefType "journal-article" @default.
- W2803403634 hasAuthorship W2803403634A5019950252 @default.
- W2803403634 hasAuthorship W2803403634A5021452248 @default.
- W2803403634 hasAuthorship W2803403634A5081702690 @default.
- W2803403634 hasAuthorship W2803403634A5082119227 @default.
- W2803403634 hasBestOaLocation W28034036341 @default.
- W2803403634 hasConcept C121332964 @default.
- W2803403634 hasConcept C127313418 @default.
- W2803403634 hasConcept C127413603 @default.
- W2803403634 hasConcept C130047971 @default.
- W2803403634 hasConcept C146978453 @default.
- W2803403634 hasConcept C153294291 @default.
- W2803403634 hasConcept C16405173 @default.
- W2803403634 hasConcept C19269812 @default.
- W2803403634 hasConcept C197046000 @default.
- W2803403634 hasConcept C199390426 @default.
- W2803403634 hasConcept C205649164 @default.
- W2803403634 hasConcept C30354325 @default.
- W2803403634 hasConcept C39432304 @default.
- W2803403634 hasConcept C41008148 @default.
- W2803403634 hasConcept C49204034 @default.
- W2803403634 hasConcept C555944384 @default.
- W2803403634 hasConcept C62520636 @default.
- W2803403634 hasConcept C62649853 @default.
- W2803403634 hasConcept C74902906 @default.
- W2803403634 hasConcept C76155785 @default.
- W2803403634 hasConcept C9075549 @default.
- W2803403634 hasConcept C91586092 @default.
- W2803403634 hasConceptScore W2803403634C121332964 @default.
- W2803403634 hasConceptScore W2803403634C127313418 @default.
- W2803403634 hasConceptScore W2803403634C127413603 @default.