Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803405718> ?p ?o ?g. }
- W2803405718 abstract "There is growing interest in utilizing artificial intelligence, and particularly deep learning, for computer vision in histopathology. While accumulating studies highlight expert-level performance of convolutional neural networks (CNNs) on focused classification tasks, most studies rely on probability distribution scores with empirically defined cutoff values based on post-hoc analysis. More generalizable tools that allow humans to visualize histology-based deep learning inferences and decision making are scarce. Here, we leverage t-distributed Stochastic Neighbor Embedding (t-SNE) to reduce dimensionality and depict how CNNs organize histomorphologic information. Unique to our workflow, we develop a quantitative and transparent approach to visualizing classification decisions prior to softmax compression. By discretizing the relationships between classes on the t-SNE plot, we show we can super-impose randomly sampled regions of test images and use their distribution to render statistically-driven classifications. Therefore, in addition to providing intuitive outputs for human review, this visual approach can carry out automated and objective multi-class classifications similar to more traditional and less-transparent categorical probability distribution scores. Importantly, this novel classification approach is driven by a priori statistically defined cutoffs. It therefore serves as a generalizable classification and anomaly detection tool less reliant on post-hoc tuning. Routine incorporation of this convenient approach for quantitative visualization and error reduction in histopathology aims to accelerate early adoption of CNNs into generalized real-world applications where unanticipated and previously untrained classes are often encountered." @default.
- W2803405718 created "2018-06-01" @default.
- W2803405718 creator A5008964484 @default.
- W2803405718 creator A5011613624 @default.
- W2803405718 creator A5031040653 @default.
- W2803405718 creator A5066787661 @default.
- W2803405718 creator A5077316921 @default.
- W2803405718 creator A5080096764 @default.
- W2803405718 creator A5090625322 @default.
- W2803405718 date "2018-05-16" @default.
- W2803405718 modified "2023-10-16" @default.
- W2803405718 title "Visualizing histopathologic deep learning classification and anomaly detection using nonlinear feature space dimensionality reduction" @default.
- W2803405718 cites W1901164038 @default.
- W2803405718 cites W2034838676 @default.
- W2803405718 cites W2085678918 @default.
- W2803405718 cites W2098105438 @default.
- W2803405718 cites W2103061399 @default.
- W2803405718 cites W2132620282 @default.
- W2803405718 cites W2148977460 @default.
- W2803405718 cites W2200290088 @default.
- W2803405718 cites W2257979135 @default.
- W2803405718 cites W2261254692 @default.
- W2803405718 cites W2342463046 @default.
- W2803405718 cites W2366536035 @default.
- W2803405718 cites W2401520370 @default.
- W2803405718 cites W2512304460 @default.
- W2803405718 cites W2514628397 @default.
- W2803405718 cites W2581082771 @default.
- W2803405718 cites W2618999197 @default.
- W2803405718 cites W2624968784 @default.
- W2803405718 cites W4248810809 @default.
- W2803405718 cites W4293529598 @default.
- W2803405718 doi "https://doi.org/10.1186/s12859-018-2184-4" @default.
- W2803405718 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5956828" @default.
- W2803405718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29769044" @default.
- W2803405718 hasPublicationYear "2018" @default.
- W2803405718 type Work @default.
- W2803405718 sameAs 2803405718 @default.
- W2803405718 citedByCount "46" @default.
- W2803405718 countsByYear W28034057182019 @default.
- W2803405718 countsByYear W28034057182020 @default.
- W2803405718 countsByYear W28034057182021 @default.
- W2803405718 countsByYear W28034057182022 @default.
- W2803405718 countsByYear W28034057182023 @default.
- W2803405718 crossrefType "journal-article" @default.
- W2803405718 hasAuthorship W2803405718A5008964484 @default.
- W2803405718 hasAuthorship W2803405718A5011613624 @default.
- W2803405718 hasAuthorship W2803405718A5031040653 @default.
- W2803405718 hasAuthorship W2803405718A5066787661 @default.
- W2803405718 hasAuthorship W2803405718A5077316921 @default.
- W2803405718 hasAuthorship W2803405718A5080096764 @default.
- W2803405718 hasAuthorship W2803405718A5090625322 @default.
- W2803405718 hasBestOaLocation W28034057181 @default.
- W2803405718 hasConcept C101738243 @default.
- W2803405718 hasConcept C108583219 @default.
- W2803405718 hasConcept C119857082 @default.
- W2803405718 hasConcept C148483581 @default.
- W2803405718 hasConcept C153083717 @default.
- W2803405718 hasConcept C153180895 @default.
- W2803405718 hasConcept C154945302 @default.
- W2803405718 hasConcept C188441871 @default.
- W2803405718 hasConcept C41008148 @default.
- W2803405718 hasConcept C5274069 @default.
- W2803405718 hasConcept C70518039 @default.
- W2803405718 hasConcept C739882 @default.
- W2803405718 hasConcept C81363708 @default.
- W2803405718 hasConcept C83665646 @default.
- W2803405718 hasConceptScore W2803405718C101738243 @default.
- W2803405718 hasConceptScore W2803405718C108583219 @default.
- W2803405718 hasConceptScore W2803405718C119857082 @default.
- W2803405718 hasConceptScore W2803405718C148483581 @default.
- W2803405718 hasConceptScore W2803405718C153083717 @default.
- W2803405718 hasConceptScore W2803405718C153180895 @default.
- W2803405718 hasConceptScore W2803405718C154945302 @default.
- W2803405718 hasConceptScore W2803405718C188441871 @default.
- W2803405718 hasConceptScore W2803405718C41008148 @default.
- W2803405718 hasConceptScore W2803405718C5274069 @default.
- W2803405718 hasConceptScore W2803405718C70518039 @default.
- W2803405718 hasConceptScore W2803405718C739882 @default.
- W2803405718 hasConceptScore W2803405718C81363708 @default.
- W2803405718 hasConceptScore W2803405718C83665646 @default.
- W2803405718 hasFunder F4320319978 @default.
- W2803405718 hasIssue "1" @default.
- W2803405718 hasLocation W28034057181 @default.
- W2803405718 hasLocation W28034057182 @default.
- W2803405718 hasLocation W28034057183 @default.
- W2803405718 hasLocation W28034057184 @default.
- W2803405718 hasLocation W28034057185 @default.
- W2803405718 hasLocation W28034057186 @default.
- W2803405718 hasOpenAccess W2803405718 @default.
- W2803405718 hasPrimaryLocation W28034057181 @default.
- W2803405718 hasRelatedWork W2002563186 @default.
- W2803405718 hasRelatedWork W2120026622 @default.
- W2803405718 hasRelatedWork W2355395139 @default.
- W2803405718 hasRelatedWork W2594436708 @default.
- W2803405718 hasRelatedWork W2769441402 @default.
- W2803405718 hasRelatedWork W2789476480 @default.
- W2803405718 hasRelatedWork W2951850672 @default.
- W2803405718 hasRelatedWork W4285596704 @default.
- W2803405718 hasRelatedWork W4310873165 @default.