Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803511377> ?p ?o ?g. }
- W2803511377 abstract "The advantages envisioned from using large antenna arrays have made massive multiple- input multiple-output systems (also known as massive MIMO) a promising technology for future wireless standards. Despite the advantages that massive MIMO systems provide, increasing the number of antennas introduces new technical challenges that need to be resolved. In particular, symbol detection is one of the key challenges in massive MIMO. Obtaining accurate channel state information (CSI) for the extremely large number of chan- nels involved is a difficult task and consumes significant resources. Therefore for Massive MIMO systems coherent detectors must be able to cope with highly imperfect CSI. More importantly, non-coherent schemes which do not rely on CSI for symbol detection become very attractive. Expectation propagation (EP) has been recently proposed as a low complexity algo- rithm for symbol detection in massive MIMO systems , where its performance is evaluated on the premise that perfect channel state information (CSI) is available at the receiver. However, in practical systems, exact CSI is not available due to a variety of reasons in- cluding channel estimation errors, quantization errors and aging. In this work we study the performance of EP in the presence of imperfect CSI due to channel estimation er- rors and show that in this case the EP detector experiences significant performance loss. Moreover, the EP detector shows a higher sensitivity to channel estimation errors in the high signal-to-noise ratio (SNR) regions where the rate of its performance improvement decreases. We investigate this behavior of the EP detector and propose a Modified EP detector for colored noise which utilizes the correlation matrix of the channel estimation error. Simulation results verify that the modified algorithm is robust against imperfect CSI and its performance is significantly improved over the EP algorithm, particularly in the higher SNR regions, and that for the modified detector, the slope of the symbol error rate (SER) vs. SNR plots are similar to the case of perfect CSI. Next, an algorithm based on expectation propagation is proposed for noncoherent symbol detection in large-scale SIMO systems. It is verified through simulation that in terms of SER, the proposed detector outperforms the pilotbased coherent MMSE detector for blocks as small as two symbols. This makes the proposed detector suitable for fast fading channels with very short coherence times. In addition, the SER performance of this detec- tor converges to that of the optimum ML receiver when the size of the blocks increases. Finally it is shown that for Rician fading channels, knowledge of the fading parameters is not required for achieving the SER gains. A channel estimation method was recently proposed for multi-cell massive MIMO sys- tems based on the eigenvalue decomposition of the correlation matrix of the received vectors (EVD-based). This algorithm, however, is sensitive to the size of the antenna array as well as the number of samples used in the evaluation of the correlation matrix. As the final work in this dissertation, we present a noncoherent channel estimation and symbol de- tection scheme for multi-cell massive MIMO systems based on expectation propagation. The proposed algorithm is initialized with the channel estimation result from the EVD- based method. Simulation results show that after a few iterations, the EP-based algorithm significantly outperforms the EVD-based method in both channel estimation and symbol error rate. Moreover, the EP-based algorithm is not sensitive to antenna array size or the inaccuracies of sample correlation matrix." @default.
- W2803511377 created "2018-06-01" @default.
- W2803511377 creator A5050925212 @default.
- W2803511377 date "2022-06-10" @default.
- W2803511377 modified "2023-10-15" @default.
- W2803511377 title "Channel Estimation and Symbol Detection In Massive MIMO Systems Using Expectation Propagation" @default.
- W2803511377 cites W1515272691 @default.
- W2803511377 cites W1517387667 @default.
- W2803511377 cites W1590749974 @default.
- W2803511377 cites W1634253120 @default.
- W2803511377 cites W1640112328 @default.
- W2803511377 cites W1667950888 @default.
- W2803511377 cites W1721817043 @default.
- W2803511377 cites W1761295751 @default.
- W2803511377 cites W1934021597 @default.
- W2803511377 cites W1965392255 @default.
- W2803511377 cites W1984386576 @default.
- W2803511377 cites W1992036418 @default.
- W2803511377 cites W1993360291 @default.
- W2803511377 cites W1993455775 @default.
- W2803511377 cites W2001284945 @default.
- W2803511377 cites W2021699271 @default.
- W2803511377 cites W2023409468 @default.
- W2803511377 cites W2047459700 @default.
- W2803511377 cites W2072396234 @default.
- W2803511377 cites W2084304524 @default.
- W2803511377 cites W2111113050 @default.
- W2803511377 cites W2115806178 @default.
- W2803511377 cites W2117787771 @default.
- W2803511377 cites W2119456443 @default.
- W2803511377 cites W2121594635 @default.
- W2803511377 cites W2130509920 @default.
- W2803511377 cites W2133475491 @default.
- W2803511377 cites W2137813581 @default.
- W2803511377 cites W2147035723 @default.
- W2803511377 cites W2147601077 @default.
- W2803511377 cites W2161410889 @default.
- W2803511377 cites W2162885831 @default.
- W2803511377 cites W2169415915 @default.
- W2803511377 cites W2171387626 @default.
- W2803511377 cites W2238937638 @default.
- W2803511377 cites W2343491855 @default.
- W2803511377 cites W2408600879 @default.
- W2803511377 cites W2539198515 @default.
- W2803511377 cites W2545540390 @default.
- W2803511377 cites W2596893449 @default.
- W2803511377 cites W2741549041 @default.
- W2803511377 cites W2798333393 @default.
- W2803511377 cites W2964094639 @default.
- W2803511377 cites W3106282754 @default.
- W2803511377 cites W336602872 @default.
- W2803511377 cites W610891907 @default.
- W2803511377 doi "https://doi.org/10.31390/gradschool_dissertations.4378" @default.
- W2803511377 hasPublicationYear "2022" @default.
- W2803511377 type Work @default.
- W2803511377 sameAs 2803511377 @default.
- W2803511377 citedByCount "0" @default.
- W2803511377 crossrefType "dissertation" @default.
- W2803511377 hasAuthorship W2803511377A5050925212 @default.
- W2803511377 hasBestOaLocation W28035113771 @default.
- W2803511377 hasConcept C113775141 @default.
- W2803511377 hasConcept C11413529 @default.
- W2803511377 hasConcept C127162648 @default.
- W2803511377 hasConcept C127413603 @default.
- W2803511377 hasConcept C148063708 @default.
- W2803511377 hasConcept C165650700 @default.
- W2803511377 hasConcept C207987634 @default.
- W2803511377 hasConcept C24326235 @default.
- W2803511377 hasConcept C28855332 @default.
- W2803511377 hasConcept C41008148 @default.
- W2803511377 hasConcept C555944384 @default.
- W2803511377 hasConcept C76155785 @default.
- W2803511377 hasConcept C91330434 @default.
- W2803511377 hasConcept C94915269 @default.
- W2803511377 hasConceptScore W2803511377C113775141 @default.
- W2803511377 hasConceptScore W2803511377C11413529 @default.
- W2803511377 hasConceptScore W2803511377C127162648 @default.
- W2803511377 hasConceptScore W2803511377C127413603 @default.
- W2803511377 hasConceptScore W2803511377C148063708 @default.
- W2803511377 hasConceptScore W2803511377C165650700 @default.
- W2803511377 hasConceptScore W2803511377C207987634 @default.
- W2803511377 hasConceptScore W2803511377C24326235 @default.
- W2803511377 hasConceptScore W2803511377C28855332 @default.
- W2803511377 hasConceptScore W2803511377C41008148 @default.
- W2803511377 hasConceptScore W2803511377C555944384 @default.
- W2803511377 hasConceptScore W2803511377C76155785 @default.
- W2803511377 hasConceptScore W2803511377C91330434 @default.
- W2803511377 hasConceptScore W2803511377C94915269 @default.
- W2803511377 hasLocation W28035113771 @default.
- W2803511377 hasOpenAccess W2803511377 @default.
- W2803511377 hasPrimaryLocation W28035113771 @default.
- W2803511377 hasRelatedWork W1963593543 @default.
- W2803511377 hasRelatedWork W2133725697 @default.
- W2803511377 hasRelatedWork W2137284648 @default.
- W2803511377 hasRelatedWork W2583408947 @default.
- W2803511377 hasRelatedWork W2767299482 @default.
- W2803511377 hasRelatedWork W2989639077 @default.
- W2803511377 hasRelatedWork W2996745449 @default.
- W2803511377 hasRelatedWork W4284966983 @default.
- W2803511377 hasRelatedWork W4292070657 @default.