Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803550058> ?p ?o ?g. }
- W2803550058 endingPage "477" @default.
- W2803550058 startingPage "464" @default.
- W2803550058 abstract "Development of a bone-like 3D microenvironment with stem cells has always been intriguing in bone tissue engineering. In this study, we fabricated composite spheroids by combining functionalized fibers and human adipose-derived stem cells (hADSCs), which were fused to form a 3D mineralized tissue construct. We prepared fragmented poly (ι-lactic acid) (PLLA) fibers approximately 100 μm long by partial aminolysis of electrospun fibrous mesh. PLLA fibers were then biomineralized with various concentrations of NaHCO3 (0.005, 0.01, and 0.04 M) to form mineralized fragmented fibers (mFF1, mFF2, and mFF3, respectively). SEM analysis showed that the minerals in mFF2 and mFF3 completely covered the fiber surface, and surface chemistry analysis confirmed the presence of hydroxyapatite peaks. Additionally, mFFs formed composite spheroids with hADSCs, demonstrating that the cells were strongly attached to mFFs and homogeneously distributed throughout the spheroid. In vitro culture of spheroids in the media without osteogenic supplements showed significantly enhanced expression of osteogenic genes including Runx2 (20.83 ± 2.83 and 22.36 ± 2.18 fold increase), OPN (14.24 ± 1.71 and 15.076 ± 1.38 fold increase), and OCN (4.36 ± 0.41 and 5.63 ± 0.51 fold increase) in mFF2 and mFF3, respectively, compared to the no mineral fiber group. In addition, mineral contents were significantly increased at day 7. Blocking the biomineral-mediated signaling by PSB 603 significantly down regulated the expression of these genes in mFF3 at day 7. Finally, we fused composite spheroids to form a mineralized 3D tissue construct, which maintained the viability of cells and showed pervasively distributed minerals within the structure. Our composite spheroids could be used as an alternative platform for the development of in vitro bone models, in vivo cell carriers, and as building blocks for bioprinting 3D bone tissue.This manuscript described our recent work for the preparation of biomimeral-coated fibers that can be assembled with mesenchymal stem cells and provide bone-like environment for directed control over osteogenic differentiation. Biomineral coating onto synthetic, biodegradable single fibers was successfully carried out using multiple steps, combination of template protein coating inspired from mussel adhesion and charge-charge interactions between template proteins and mineral ions. The biomineral-coated single micro-scale fibers (1-2.5 μm in diameter) were then assembled with human adipose tissue derived stem cells (hADSCs). The assembled structure exhibited spheroidal architecture with few hundred micrometers. hADSCs within the spheroids were differentiated into osteogenic lineage in vitro and mineralized in the growth media. These spheroids were fused to form in vitro 3D mineralized tissue with larger size." @default.
- W2803550058 created "2018-06-01" @default.
- W2803550058 creator A5008250844 @default.
- W2803550058 creator A5011179489 @default.
- W2803550058 creator A5044464636 @default.
- W2803550058 creator A5046146264 @default.
- W2803550058 creator A5050008313 @default.
- W2803550058 creator A5062317501 @default.
- W2803550058 creator A5084434329 @default.
- W2803550058 creator A5085614043 @default.
- W2803550058 date "2018-07-01" @default.
- W2803550058 modified "2023-10-17" @default.
- W2803550058 title "Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells" @default.
- W2803550058 cites W1499600532 @default.
- W2803550058 cites W1499623758 @default.
- W2803550058 cites W1555544083 @default.
- W2803550058 cites W1813647781 @default.
- W2803550058 cites W1965511151 @default.
- W2803550058 cites W1965975485 @default.
- W2803550058 cites W1969598493 @default.
- W2803550058 cites W1975657976 @default.
- W2803550058 cites W1981684516 @default.
- W2803550058 cites W1982414211 @default.
- W2803550058 cites W1983651232 @default.
- W2803550058 cites W1989264567 @default.
- W2803550058 cites W1990867062 @default.
- W2803550058 cites W1991073285 @default.
- W2803550058 cites W1995197358 @default.
- W2803550058 cites W1999188785 @default.
- W2803550058 cites W2005463566 @default.
- W2803550058 cites W2008299531 @default.
- W2803550058 cites W2012655169 @default.
- W2803550058 cites W2018252962 @default.
- W2803550058 cites W2018712244 @default.
- W2803550058 cites W2021011246 @default.
- W2803550058 cites W2022591338 @default.
- W2803550058 cites W2028280538 @default.
- W2803550058 cites W2029927816 @default.
- W2803550058 cites W2036200411 @default.
- W2803550058 cites W2040810212 @default.
- W2803550058 cites W2041048532 @default.
- W2803550058 cites W2051309358 @default.
- W2803550058 cites W2059157898 @default.
- W2803550058 cites W2068574854 @default.
- W2803550058 cites W2074526547 @default.
- W2803550058 cites W2077662735 @default.
- W2803550058 cites W2099253349 @default.
- W2803550058 cites W2110656344 @default.
- W2803550058 cites W2119763108 @default.
- W2803550058 cites W2157214912 @default.
- W2803550058 cites W2162664736 @default.
- W2803550058 cites W2166269933 @default.
- W2803550058 cites W2169727595 @default.
- W2803550058 cites W2172228248 @default.
- W2803550058 cites W2178851708 @default.
- W2803550058 cites W2191932260 @default.
- W2803550058 cites W2218281805 @default.
- W2803550058 cites W2228561711 @default.
- W2803550058 cites W2236299894 @default.
- W2803550058 cites W2238333901 @default.
- W2803550058 cites W2269279982 @default.
- W2803550058 cites W2323445201 @default.
- W2803550058 cites W2332489550 @default.
- W2803550058 cites W2467332908 @default.
- W2803550058 cites W2513511026 @default.
- W2803550058 cites W2514318958 @default.
- W2803550058 cites W2520112437 @default.
- W2803550058 cites W2520900466 @default.
- W2803550058 cites W2542912178 @default.
- W2803550058 cites W2590494793 @default.
- W2803550058 cites W2613275913 @default.
- W2803550058 cites W2621780867 @default.
- W2803550058 cites W2744530667 @default.
- W2803550058 cites W2751469080 @default.
- W2803550058 cites W2759491246 @default.
- W2803550058 cites W2762506088 @default.
- W2803550058 cites W2772531541 @default.
- W2803550058 cites W2781473429 @default.
- W2803550058 doi "https://doi.org/10.1016/j.actbio.2018.05.035" @default.
- W2803550058 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29803004" @default.
- W2803550058 hasPublicationYear "2018" @default.
- W2803550058 type Work @default.
- W2803550058 sameAs 2803550058 @default.
- W2803550058 citedByCount "39" @default.
- W2803550058 countsByYear W28035500582020 @default.
- W2803550058 countsByYear W28035500582021 @default.
- W2803550058 countsByYear W28035500582022 @default.
- W2803550058 countsByYear W28035500582023 @default.
- W2803550058 crossrefType "journal-article" @default.
- W2803550058 hasAuthorship W2803550058A5008250844 @default.
- W2803550058 hasAuthorship W2803550058A5011179489 @default.
- W2803550058 hasAuthorship W2803550058A5044464636 @default.
- W2803550058 hasAuthorship W2803550058A5046146264 @default.
- W2803550058 hasAuthorship W2803550058A5050008313 @default.
- W2803550058 hasAuthorship W2803550058A5062317501 @default.
- W2803550058 hasAuthorship W2803550058A5084434329 @default.
- W2803550058 hasAuthorship W2803550058A5085614043 @default.
- W2803550058 hasConcept C104779481 @default.