Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803583314> ?p ?o ?g. }
- W2803583314 abstract "This paper contributes to cross-lingual image annotation and retrieval in terms of data and baseline methods. We propose COCO-CN, a novel dataset enriching MS-COCO with manually written Chinese sentences and tags. For more effective annotation acquisition, we develop a recommendation-assisted collective annotation system, automatically providing an annotator with several tags and sentences deemed to be relevant with respect to the pictorial content. Having 20,342 images annotated with 27,218 Chinese sentences and 70,993 tags, COCO-CN is currently the largest Chinese-English dataset that provides a unified and challenging platform for cross-lingual image tagging, captioning and retrieval. We develop conceptually simple yet effective methods per task for learning from cross-lingual resources. Extensive experiments on the three tasks justify the viability of the proposed dataset and methods. Data and code are publicly available at https://github.com/li-xirong/coco-cn" @default.
- W2803583314 created "2018-06-01" @default.
- W2803583314 creator A5002627939 @default.
- W2803583314 creator A5013551178 @default.
- W2803583314 creator A5026946768 @default.
- W2803583314 creator A5056858488 @default.
- W2803583314 creator A5060270456 @default.
- W2803583314 creator A5070578849 @default.
- W2803583314 creator A5085570630 @default.
- W2803583314 date "2018-05-22" @default.
- W2803583314 modified "2023-10-17" @default.
- W2803583314 title "COCO-CN for Cross-Lingual Image Tagging, Captioning and Retrieval" @default.
- W2803583314 cites W114341944 @default.
- W2803583314 cites W1510632636 @default.
- W2803583314 cites W1647671624 @default.
- W2803583314 cites W1889081078 @default.
- W2803583314 cites W1895577753 @default.
- W2803583314 cites W1970364187 @default.
- W2803583314 cites W2007972815 @default.
- W2803583314 cites W2046945311 @default.
- W2803583314 cites W2108598243 @default.
- W2803583314 cites W2119775030 @default.
- W2803583314 cites W2127830198 @default.
- W2803583314 cites W2138621090 @default.
- W2803583314 cites W2185175083 @default.
- W2803583314 cites W2252200119 @default.
- W2803583314 cites W2280837843 @default.
- W2803583314 cites W2406165856 @default.
- W2803583314 cites W2418300416 @default.
- W2803583314 cites W2509490957 @default.
- W2803583314 cites W2530811251 @default.
- W2803583314 cites W2549139847 @default.
- W2803583314 cites W2605649771 @default.
- W2803583314 cites W2606965845 @default.
- W2803583314 cites W2626581947 @default.
- W2803583314 cites W2652651782 @default.
- W2803583314 cites W2725249286 @default.
- W2803583314 cites W2735810033 @default.
- W2803583314 cites W2739107216 @default.
- W2803583314 cites W2745447730 @default.
- W2803583314 cites W2751445731 @default.
- W2803583314 cites W2763647787 @default.
- W2803583314 cites W2764242590 @default.
- W2803583314 cites W2768477045 @default.
- W2803583314 cites W2962958773 @default.
- W2803583314 cites W2963324994 @default.
- W2803583314 cites W2963496089 @default.
- W2803583314 cites W2963778889 @default.
- W2803583314 cites W2963909453 @default.
- W2803583314 cites W2963988211 @default.
- W2803583314 cites W2964308564 @default.
- W2803583314 cites W3102887392 @default.
- W2803583314 cites W68733909 @default.
- W2803583314 doi "https://doi.org/10.48550/arxiv.1805.08661" @default.
- W2803583314 hasPublicationYear "2018" @default.
- W2803583314 type Work @default.
- W2803583314 sameAs 2803583314 @default.
- W2803583314 citedByCount "3" @default.
- W2803583314 countsByYear W28035833142020 @default.
- W2803583314 countsByYear W28035833142021 @default.
- W2803583314 crossrefType "posted-content" @default.
- W2803583314 hasAuthorship W2803583314A5002627939 @default.
- W2803583314 hasAuthorship W2803583314A5013551178 @default.
- W2803583314 hasAuthorship W2803583314A5026946768 @default.
- W2803583314 hasAuthorship W2803583314A5056858488 @default.
- W2803583314 hasAuthorship W2803583314A5060270456 @default.
- W2803583314 hasAuthorship W2803583314A5070578849 @default.
- W2803583314 hasAuthorship W2803583314A5085570630 @default.
- W2803583314 hasBestOaLocation W28035833141 @default.
- W2803583314 hasConcept C115961682 @default.
- W2803583314 hasConcept C154945302 @default.
- W2803583314 hasConcept C157657479 @default.
- W2803583314 hasConcept C162324750 @default.
- W2803583314 hasConcept C1667742 @default.
- W2803583314 hasConcept C177264268 @default.
- W2803583314 hasConcept C187736073 @default.
- W2803583314 hasConcept C199360897 @default.
- W2803583314 hasConcept C199579030 @default.
- W2803583314 hasConcept C204321447 @default.
- W2803583314 hasConcept C21780288 @default.
- W2803583314 hasConcept C23123220 @default.
- W2803583314 hasConcept C2776321320 @default.
- W2803583314 hasConcept C2776760102 @default.
- W2803583314 hasConcept C2780451532 @default.
- W2803583314 hasConcept C41008148 @default.
- W2803583314 hasConceptScore W2803583314C115961682 @default.
- W2803583314 hasConceptScore W2803583314C154945302 @default.
- W2803583314 hasConceptScore W2803583314C157657479 @default.
- W2803583314 hasConceptScore W2803583314C162324750 @default.
- W2803583314 hasConceptScore W2803583314C1667742 @default.
- W2803583314 hasConceptScore W2803583314C177264268 @default.
- W2803583314 hasConceptScore W2803583314C187736073 @default.
- W2803583314 hasConceptScore W2803583314C199360897 @default.
- W2803583314 hasConceptScore W2803583314C199579030 @default.
- W2803583314 hasConceptScore W2803583314C204321447 @default.
- W2803583314 hasConceptScore W2803583314C21780288 @default.
- W2803583314 hasConceptScore W2803583314C23123220 @default.
- W2803583314 hasConceptScore W2803583314C2776321320 @default.
- W2803583314 hasConceptScore W2803583314C2776760102 @default.
- W2803583314 hasConceptScore W2803583314C2780451532 @default.