Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803669726> ?p ?o ?g. }
- W2803669726 endingPage "690" @default.
- W2803669726 startingPage "690" @default.
- W2803669726 abstract "Hydrological models play an important role in water resource management, but they always suffer from various sources of uncertainties. Therefore, it is necessary to implement uncertainty analysis to gain more confidence in numerical modeling. The study employed three methods (i.e., Parameter Solution (ParaSol), Sequential Uncertainty Fitting (SUFI2), and Generalized Likelihood Uncertainty Estimation (GLUE)) to quantify the parameter sensitivity and uncertainty of the SWAT (Soil and Water Assessment Tool) model in a mountain-loess transitional watershed—Jingchuan River Basin (JCRB) on the Loess Plateau, China. The model was calibrated and validated using monthly observed streamflow at the Jingchuan gaging station and the modeling results showed that SWAT performed well in the study period in the JCRB. The parameter sensitivity results demonstrated that any of the three methods were capable for the parameter sensitivity analysis in this area. Among the parameters, CN2, SOL_K, and ALPHA_BF were more sensitive to the simulation of peak flow, average flow, and low flow, respectively, compared to others (e.g., ESCO, CH_K2, and SOL_AWC) in this basin. Although the ParaSol method was more efficient in capturing the most optimal parameter set, it showed limited ability in uncertainty analysis due to the narrower 95CI and poor P-factor and R-factor in this area. In contrast, the 95CIs in SUFI2 and GLUE were wider than ParaSol, indicating that these two methods can be promising in analyzing the model parameter uncertainty. However, for the model prediction uncertainty within the same parameter range, SUFI2 was proven to be slightly more superior to GLUE. Overall, through the comparisons of the proposed evaluation criteria for uncertainty analysis (e.g., P-factor, R-factor, NSE, and R2) and the computational efficiencies, SUFI2 can be a potentially efficient tool for the parameter optimization and uncertainty analysis. This study provides an insight into selecting uncertainty analysis method in the modeling field, especially for the hydrological modeling community." @default.
- W2803669726 created "2018-06-01" @default.
- W2803669726 creator A5011057377 @default.
- W2803669726 creator A5032561297 @default.
- W2803669726 creator A5065695331 @default.
- W2803669726 creator A5070343411 @default.
- W2803669726 creator A5077039185 @default.
- W2803669726 creator A5077540484 @default.
- W2803669726 creator A5079531540 @default.
- W2803669726 creator A5083353005 @default.
- W2803669726 date "2018-05-25" @default.
- W2803669726 modified "2023-10-14" @default.
- W2803669726 title "Parameter Uncertainty Analysis of the SWAT Model in a Mountain-Loess Transitional Watershed on the Chinese Loess Plateau" @default.
- W2803669726 cites W1101061393 @default.
- W2803669726 cites W1153858119 @default.
- W2803669726 cites W1569275126 @default.
- W2803669726 cites W1898485863 @default.
- W2803669726 cites W1921089008 @default.
- W2803669726 cites W1966221815 @default.
- W2803669726 cites W1973445129 @default.
- W2803669726 cites W1974452437 @default.
- W2803669726 cites W1978476943 @default.
- W2803669726 cites W1982534657 @default.
- W2803669726 cites W1983724666 @default.
- W2803669726 cites W1990373075 @default.
- W2803669726 cites W1991921673 @default.
- W2803669726 cites W1994977030 @default.
- W2803669726 cites W2004645788 @default.
- W2803669726 cites W2009189976 @default.
- W2803669726 cites W2026205037 @default.
- W2803669726 cites W2029361034 @default.
- W2803669726 cites W2056995680 @default.
- W2803669726 cites W2058998445 @default.
- W2803669726 cites W2059066272 @default.
- W2803669726 cites W2059746554 @default.
- W2803669726 cites W2064184540 @default.
- W2803669726 cites W2065110389 @default.
- W2803669726 cites W2089719636 @default.
- W2803669726 cites W2090915513 @default.
- W2803669726 cites W2124738823 @default.
- W2803669726 cites W2128003492 @default.
- W2803669726 cites W2133837084 @default.
- W2803669726 cites W2166651518 @default.
- W2803669726 cites W2168388823 @default.
- W2803669726 cites W2169616177 @default.
- W2803669726 cites W2486906079 @default.
- W2803669726 cites W2554575237 @default.
- W2803669726 cites W2560089634 @default.
- W2803669726 cites W2591148315 @default.
- W2803669726 cites W2617979241 @default.
- W2803669726 cites W2752079103 @default.
- W2803669726 cites W2763124193 @default.
- W2803669726 cites W2777490647 @default.
- W2803669726 cites W2793123990 @default.
- W2803669726 cites W2801893240 @default.
- W2803669726 cites W4236421180 @default.
- W2803669726 cites W651094785 @default.
- W2803669726 doi "https://doi.org/10.3390/w10060690" @default.
- W2803669726 hasPublicationYear "2018" @default.
- W2803669726 type Work @default.
- W2803669726 sameAs 2803669726 @default.
- W2803669726 citedByCount "64" @default.
- W2803669726 countsByYear W28036697262018 @default.
- W2803669726 countsByYear W28036697262019 @default.
- W2803669726 countsByYear W28036697262020 @default.
- W2803669726 countsByYear W28036697262021 @default.
- W2803669726 countsByYear W28036697262022 @default.
- W2803669726 countsByYear W28036697262023 @default.
- W2803669726 crossrefType "journal-article" @default.
- W2803669726 hasAuthorship W2803669726A5011057377 @default.
- W2803669726 hasAuthorship W2803669726A5032561297 @default.
- W2803669726 hasAuthorship W2803669726A5065695331 @default.
- W2803669726 hasAuthorship W2803669726A5070343411 @default.
- W2803669726 hasAuthorship W2803669726A5077039185 @default.
- W2803669726 hasAuthorship W2803669726A5077540484 @default.
- W2803669726 hasAuthorship W2803669726A5079531540 @default.
- W2803669726 hasAuthorship W2803669726A5083353005 @default.
- W2803669726 hasBestOaLocation W28036697261 @default.
- W2803669726 hasConcept C105795698 @default.
- W2803669726 hasConcept C114793014 @default.
- W2803669726 hasConcept C119857082 @default.
- W2803669726 hasConcept C126645576 @default.
- W2803669726 hasConcept C127313418 @default.
- W2803669726 hasConcept C127413603 @default.
- W2803669726 hasConcept C134306372 @default.
- W2803669726 hasConcept C146978453 @default.
- W2803669726 hasConcept C150547873 @default.
- W2803669726 hasConcept C159390177 @default.
- W2803669726 hasConcept C177803969 @default.
- W2803669726 hasConcept C185515318 @default.
- W2803669726 hasConcept C187320778 @default.
- W2803669726 hasConcept C204323151 @default.
- W2803669726 hasConcept C205649164 @default.
- W2803669726 hasConcept C21200559 @default.
- W2803669726 hasConcept C24326235 @default.
- W2803669726 hasConcept C2779937294 @default.
- W2803669726 hasConcept C2780030769 @default.
- W2803669726 hasConcept C2780623283 @default.