Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803678489> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2803678489 abstract "Estimating tropical cyclone intensity by just using satellite image is a challenging problem. With successful application of the Dvorak technique for more than 30 years along with some modifications and improvements, it is still used worldwide for tropical cyclone intensity estimation. A number of semi-automated techniques have been derived using the original Dvorak technique. However, these techniques suffer from subjective bias as evident from the most recent estimations on October 10, 2017 at 1500 UTC for Tropical Storm Ophelia: The Dvorak intensity estimates ranged from T2.3/33 kt (Tropical Cyclone Number 2.3/33 knots) from UW-CIMSS (University of Wisconsin-Madison - Cooperative Institute for Meteorological Satellite Studies) to T3.0/45 kt from TAFB (the National Hurricane Center's Tropical Analysis and Forecast Branch) to T4.0/65 kt from SAB (NOAA/NESDIS Satellite Analysis Branch). In this particular case, two human experts at TAFB and SAB differed by 20 knots in their Dvorak analyses, and the automated version at the University of Wisconsin was 12 knots lower than either of them. The National Hurricane Center (NHC) estimates about 10-20 percent uncertainty in its post analysis when only satellite based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to tropical cyclone intensity. This study aims to utilize deep learning, the current state of the art in pattern recognition and image recognition, to address the need for an automated and objective tropical cyclone intensity estimation. Deep learning is a multi-layer neural network consisting of several layers of simple computational units. It learns discriminative features without relying on a human expert to identify which features are important. Our study mainly focuses on convolutional neural network (CNN), a deep learning algorithm, to develop an objective tropical cyclone intensity estimation. CNN is a supervised learning algorithm requiring a large number of training data. Since the archives of intensity data and tropical cyclone centric satellite images is openly available for use, the training data is easily created by combining the two. Results, case studies, prototypes, and advantages of this approach will be discussed." @default.
- W2803678489 created "2018-06-01" @default.
- W2803678489 creator A5001110922 @default.
- W2803678489 creator A5002530990 @default.
- W2803678489 creator A5023315163 @default.
- W2803678489 creator A5064554158 @default.
- W2803678489 date "2018-04-16" @default.
- W2803678489 modified "2023-09-24" @default.
- W2803678489 title "Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks" @default.
- W2803678489 hasPublicationYear "2018" @default.
- W2803678489 type Work @default.
- W2803678489 sameAs 2803678489 @default.
- W2803678489 citedByCount "0" @default.
- W2803678489 crossrefType "journal-article" @default.
- W2803678489 hasAuthorship W2803678489A5001110922 @default.
- W2803678489 hasAuthorship W2803678489A5002530990 @default.
- W2803678489 hasAuthorship W2803678489A5023315163 @default.
- W2803678489 hasAuthorship W2803678489A5064554158 @default.
- W2803678489 hasConcept C105306849 @default.
- W2803678489 hasConcept C108583219 @default.
- W2803678489 hasConcept C121332964 @default.
- W2803678489 hasConcept C127313418 @default.
- W2803678489 hasConcept C127413603 @default.
- W2803678489 hasConcept C146978453 @default.
- W2803678489 hasConcept C153294291 @default.
- W2803678489 hasConcept C154945302 @default.
- W2803678489 hasConcept C19269812 @default.
- W2803678489 hasConcept C201995342 @default.
- W2803678489 hasConcept C205649164 @default.
- W2803678489 hasConcept C2777864850 @default.
- W2803678489 hasConcept C2778102629 @default.
- W2803678489 hasConcept C29141058 @default.
- W2803678489 hasConcept C39432304 @default.
- W2803678489 hasConcept C41008148 @default.
- W2803678489 hasConcept C42935608 @default.
- W2803678489 hasConcept C49204034 @default.
- W2803678489 hasConcept C62520636 @default.
- W2803678489 hasConcept C81363708 @default.
- W2803678489 hasConcept C93038891 @default.
- W2803678489 hasConcept C9390403 @default.
- W2803678489 hasConcept C96250715 @default.
- W2803678489 hasConceptScore W2803678489C105306849 @default.
- W2803678489 hasConceptScore W2803678489C108583219 @default.
- W2803678489 hasConceptScore W2803678489C121332964 @default.
- W2803678489 hasConceptScore W2803678489C127313418 @default.
- W2803678489 hasConceptScore W2803678489C127413603 @default.
- W2803678489 hasConceptScore W2803678489C146978453 @default.
- W2803678489 hasConceptScore W2803678489C153294291 @default.
- W2803678489 hasConceptScore W2803678489C154945302 @default.
- W2803678489 hasConceptScore W2803678489C19269812 @default.
- W2803678489 hasConceptScore W2803678489C201995342 @default.
- W2803678489 hasConceptScore W2803678489C205649164 @default.
- W2803678489 hasConceptScore W2803678489C2777864850 @default.
- W2803678489 hasConceptScore W2803678489C2778102629 @default.
- W2803678489 hasConceptScore W2803678489C29141058 @default.
- W2803678489 hasConceptScore W2803678489C39432304 @default.
- W2803678489 hasConceptScore W2803678489C41008148 @default.
- W2803678489 hasConceptScore W2803678489C42935608 @default.
- W2803678489 hasConceptScore W2803678489C49204034 @default.
- W2803678489 hasConceptScore W2803678489C62520636 @default.
- W2803678489 hasConceptScore W2803678489C81363708 @default.
- W2803678489 hasConceptScore W2803678489C93038891 @default.
- W2803678489 hasConceptScore W2803678489C9390403 @default.
- W2803678489 hasConceptScore W2803678489C96250715 @default.
- W2803678489 hasLocation W28036784891 @default.
- W2803678489 hasOpenAccess W2803678489 @default.
- W2803678489 hasPrimaryLocation W28036784891 @default.
- W2803678489 hasRelatedWork W1496752273 @default.
- W2803678489 hasRelatedWork W1778895768 @default.
- W2803678489 hasRelatedWork W2062010602 @default.
- W2803678489 hasRelatedWork W2078770669 @default.
- W2803678489 hasRelatedWork W2135066958 @default.
- W2803678489 hasRelatedWork W2343882029 @default.
- W2803678489 hasRelatedWork W2483001566 @default.
- W2803678489 hasRelatedWork W2919354935 @default.
- W2803678489 hasRelatedWork W3033421405 @default.
- W2803678489 hasRelatedWork W3086832421 @default.
- W2803678489 hasRelatedWork W3130207954 @default.
- W2803678489 hasRelatedWork W3130983214 @default.
- W2803678489 hasRelatedWork W3142405176 @default.
- W2803678489 hasRelatedWork W3154500771 @default.
- W2803678489 hasRelatedWork W3165529874 @default.
- W2803678489 hasRelatedWork W3206666125 @default.
- W2803678489 hasRelatedWork W322730704 @default.
- W2803678489 hasRelatedWork W591182147 @default.
- W2803678489 hasRelatedWork W775997575 @default.
- W2803678489 hasRelatedWork W214340073 @default.
- W2803678489 isParatext "false" @default.
- W2803678489 isRetracted "false" @default.
- W2803678489 magId "2803678489" @default.
- W2803678489 workType "article" @default.