Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803701812> ?p ?o ?g. }
- W2803701812 endingPage "190" @default.
- W2803701812 startingPage "180" @default.
- W2803701812 abstract "In this study, the Poisson equation is generalized with the concept of variable-order (V-O) fractional derivatives called variable-order fractional Poisson equation (V-OFPE). In order to find an accurate solution of this system, we establish an optimization method through the Legendre wavelets (LWs). To carry out the method, we firstly derive an operational matrix (OM) of V-O fractional derivative for the LWs to be employed in expanding the unknown solution. Then, the function of residual is applied to reform the V-OFPE to an optimization problem which leads to choose the unknown coefficients optimally. In the final step, we implement the constrained extremum method which adjoins the objective function implied from the two-norm of residual function and the constraints corresponded to the given boundary conditions by a set of Lagrange multipliers. Accordingly, the final optimal conditions are actually the algebraic equations including the expansion coefficients and Lagrange multipliers. Theoretical convergence and error analysis of the approximation procedure using the LWs are investigated. In addition, the applicability and computational efficiency are experimentally examined for some illustrative examples." @default.
- W2803701812 created "2018-06-01" @default.
- W2803701812 creator A5015962889 @default.
- W2803701812 creator A5074418418 @default.
- W2803701812 date "2018-07-01" @default.
- W2803701812 modified "2023-10-14" @default.
- W2803701812 title "Legendre wavelets optimization method for variable-order fractional Poisson equation" @default.
- W2803701812 cites W1571391776 @default.
- W2803701812 cites W1969488158 @default.
- W2803701812 cites W1970173324 @default.
- W2803701812 cites W1971359112 @default.
- W2803701812 cites W1975383112 @default.
- W2803701812 cites W1978848705 @default.
- W2803701812 cites W1986915637 @default.
- W2803701812 cites W1987452198 @default.
- W2803701812 cites W2002324029 @default.
- W2803701812 cites W2004531333 @default.
- W2803701812 cites W2016124038 @default.
- W2803701812 cites W2023153411 @default.
- W2803701812 cites W2026882859 @default.
- W2803701812 cites W2040329976 @default.
- W2803701812 cites W2042923669 @default.
- W2803701812 cites W2043742654 @default.
- W2803701812 cites W2047821137 @default.
- W2803701812 cites W2048618474 @default.
- W2803701812 cites W2050981193 @default.
- W2803701812 cites W2051622094 @default.
- W2803701812 cites W2052728710 @default.
- W2803701812 cites W2056194922 @default.
- W2803701812 cites W2058330335 @default.
- W2803701812 cites W2060462514 @default.
- W2803701812 cites W2076575482 @default.
- W2803701812 cites W2080430919 @default.
- W2803701812 cites W2082944446 @default.
- W2803701812 cites W2087661690 @default.
- W2803701812 cites W2090303355 @default.
- W2803701812 cites W2093108432 @default.
- W2803701812 cites W2094129935 @default.
- W2803701812 cites W2098263458 @default.
- W2803701812 cites W2104499907 @default.
- W2803701812 cites W2107162131 @default.
- W2803701812 cites W2117785697 @default.
- W2803701812 cites W2121975177 @default.
- W2803701812 cites W2137696066 @default.
- W2803701812 cites W2138671184 @default.
- W2803701812 cites W2156961733 @default.
- W2803701812 cites W2164634622 @default.
- W2803701812 cites W2170267205 @default.
- W2803701812 cites W2221789502 @default.
- W2803701812 cites W2282745915 @default.
- W2803701812 cites W2322901589 @default.
- W2803701812 cites W2343525598 @default.
- W2803701812 cites W2601612027 @default.
- W2803701812 cites W2604763123 @default.
- W2803701812 cites W2769326112 @default.
- W2803701812 doi "https://doi.org/10.1016/j.chaos.2018.04.028" @default.
- W2803701812 hasPublicationYear "2018" @default.
- W2803701812 type Work @default.
- W2803701812 sameAs 2803701812 @default.
- W2803701812 citedByCount "48" @default.
- W2803701812 countsByYear W28037018122018 @default.
- W2803701812 countsByYear W28037018122019 @default.
- W2803701812 countsByYear W28037018122020 @default.
- W2803701812 countsByYear W28037018122021 @default.
- W2803701812 countsByYear W28037018122022 @default.
- W2803701812 countsByYear W28037018122023 @default.
- W2803701812 crossrefType "journal-article" @default.
- W2803701812 hasAuthorship W2803701812A5015962889 @default.
- W2803701812 hasAuthorship W2803701812A5074418418 @default.
- W2803701812 hasConcept C111458787 @default.
- W2803701812 hasConcept C11413529 @default.
- W2803701812 hasConcept C121332964 @default.
- W2803701812 hasConcept C123769847 @default.
- W2803701812 hasConcept C126255220 @default.
- W2803701812 hasConcept C134306372 @default.
- W2803701812 hasConcept C154945302 @default.
- W2803701812 hasConcept C155512373 @default.
- W2803701812 hasConcept C158622935 @default.
- W2803701812 hasConcept C182365436 @default.
- W2803701812 hasConcept C196216189 @default.
- W2803701812 hasConcept C23917780 @default.
- W2803701812 hasConcept C28826006 @default.
- W2803701812 hasConcept C33923547 @default.
- W2803701812 hasConcept C41008148 @default.
- W2803701812 hasConcept C46286280 @default.
- W2803701812 hasConcept C47432892 @default.
- W2803701812 hasConcept C62520636 @default.
- W2803701812 hasConcept C73684929 @default.
- W2803701812 hasConcept C96716743 @default.
- W2803701812 hasConceptScore W2803701812C111458787 @default.
- W2803701812 hasConceptScore W2803701812C11413529 @default.
- W2803701812 hasConceptScore W2803701812C121332964 @default.
- W2803701812 hasConceptScore W2803701812C123769847 @default.
- W2803701812 hasConceptScore W2803701812C126255220 @default.
- W2803701812 hasConceptScore W2803701812C134306372 @default.
- W2803701812 hasConceptScore W2803701812C154945302 @default.
- W2803701812 hasConceptScore W2803701812C155512373 @default.
- W2803701812 hasConceptScore W2803701812C158622935 @default.