Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803727871> ?p ?o ?g. }
- W2803727871 endingPage "828" @default.
- W2803727871 startingPage "828" @default.
- W2803727871 abstract "The Meghna River basin is a transboundary basin that lies in Bangladesh (~40%) and India (~60%). Due to its terrain structure, the Bangladesh portion of the basin experiences frequent floods that cause severe human and economic losses. Bangladesh, as the downstream nation in the basin, faces challenges in receiving hydro-meteorological and water use data from India for effective water resource management. To address such issue, satellite rainfall products are recognized as an alternative. However, they are affected by biases and, thus, must be calibrated and verified using ground observations. This research compares the performance of four widely available gauge-adjusted satellite rainfall products (GSRPs) against ground rainfall observations in the Meghna basin within Bangladesh. Further biases in the GSRPs are then identified. The GSRPs have both similarities and differences in terms of producing biases. To maximize the usage of the GSRPs and to further improve their accuracy, several bias correction and merging techniques are applied to correct them. Correction factors and merging weights are calculated at the local gauge stations and are spatially distributed by adopting an interpolation method to improve the GSRPs, both inside and outside Bangladesh. Of the four bias correction methods, modified linear correction (MLC) has performed better, and partially removed the GSRPs’ systematic biases. In addition, of the three merging techniques, inverse error-variance weighting (IEVW) has provided better results than the individual GSRPs and removed significantly more biases than the MLC correction method for three of the five validation stations, whereas the two other stations that experienced heavy rainfall events, showed better results for the MLC method. Hence, the combined use of IEVW merging and MLC correction is explored. The combined method has provided the best results, thus creating an improved dataset. The applicability of this dataset is then investigated using a hydrological model to simulated streamflows at two critical locations. The results show that the dataset reproduces the hydrological responses of the basin well, as compared with the observed streamflows. Together, these results indicate that the improved dataset can overcome the limitations of poor data availability in the basin and can serve as a reference rainfall dataset for wide range of applications (e.g., flood modelling and forecasting, irrigation planning, damage and risk assessment, and climate change adaptation planning). In addition, the proposed methodology of creating a reference rainfall dataset based on the GSRPs could also be applicable to other poorly-gauged and inaccessible transboundary river basins, thus providing reliable rainfall information and effective water resource management for sustainable development." @default.
- W2803727871 created "2018-06-01" @default.
- W2803727871 creator A5000768785 @default.
- W2803727871 creator A5053803963 @default.
- W2803727871 creator A5064605531 @default.
- W2803727871 creator A5068404849 @default.
- W2803727871 creator A5081725859 @default.
- W2803727871 date "2018-05-25" @default.
- W2803727871 modified "2023-10-14" @default.
- W2803727871 title "Inter-Comparison of Gauge-Corrected Global Satellite Rainfall Estimates and Their Applicability for Effective Water Resource Management in a Transboundary River Basin: The Case of the Meghna River Basin" @default.
- W2803727871 cites W1491786939 @default.
- W2803727871 cites W1538096960 @default.
- W2803727871 cites W1568694182 @default.
- W2803727871 cites W1602738779 @default.
- W2803727871 cites W1917061602 @default.
- W2803727871 cites W1924304987 @default.
- W2803727871 cites W1981614446 @default.
- W2803727871 cites W1984129257 @default.
- W2803727871 cites W1985479415 @default.
- W2803727871 cites W1986153748 @default.
- W2803727871 cites W1986655878 @default.
- W2803727871 cites W1988848014 @default.
- W2803727871 cites W1989705028 @default.
- W2803727871 cites W1990858658 @default.
- W2803727871 cites W1994787627 @default.
- W2803727871 cites W1995622703 @default.
- W2803727871 cites W1999620051 @default.
- W2803727871 cites W2000827762 @default.
- W2803727871 cites W2002130598 @default.
- W2803727871 cites W2002340384 @default.
- W2803727871 cites W2008669846 @default.
- W2803727871 cites W2009156651 @default.
- W2803727871 cites W2011601793 @default.
- W2803727871 cites W2012946021 @default.
- W2803727871 cites W2017559255 @default.
- W2803727871 cites W2018625975 @default.
- W2803727871 cites W2022741530 @default.
- W2803727871 cites W2023796502 @default.
- W2803727871 cites W2026303775 @default.
- W2803727871 cites W2029604816 @default.
- W2803727871 cites W2034174587 @default.
- W2803727871 cites W2040208504 @default.
- W2803727871 cites W2043260633 @default.
- W2803727871 cites W2047111672 @default.
- W2803727871 cites W2052024612 @default.
- W2803727871 cites W2052138108 @default.
- W2803727871 cites W2055695879 @default.
- W2803727871 cites W2060747052 @default.
- W2803727871 cites W2070419454 @default.
- W2803727871 cites W2075368648 @default.
- W2803727871 cites W2083013075 @default.
- W2803727871 cites W2084557503 @default.
- W2803727871 cites W2084744129 @default.
- W2803727871 cites W2089603617 @default.
- W2803727871 cites W2098979503 @default.
- W2803727871 cites W2099270539 @default.
- W2803727871 cites W2099688322 @default.
- W2803727871 cites W2101394945 @default.
- W2803727871 cites W2108731026 @default.
- W2803727871 cites W2115390542 @default.
- W2803727871 cites W2127579636 @default.
- W2803727871 cites W2133757601 @default.
- W2803727871 cites W2140994193 @default.
- W2803727871 cites W2148265007 @default.
- W2803727871 cites W2150285422 @default.
- W2803727871 cites W2156029898 @default.
- W2803727871 cites W2158248969 @default.
- W2803727871 cites W2158513110 @default.
- W2803727871 cites W2164419780 @default.
- W2803727871 cites W2168945835 @default.
- W2803727871 cites W2171675471 @default.
- W2803727871 cites W2261645655 @default.
- W2803727871 cites W2272889908 @default.
- W2803727871 cites W2280630627 @default.
- W2803727871 cites W2397311736 @default.
- W2803727871 cites W2414391554 @default.
- W2803727871 cites W2429538525 @default.
- W2803727871 cites W2524182852 @default.
- W2803727871 cites W2579594096 @default.
- W2803727871 cites W2771159036 @default.
- W2803727871 cites W4236084684 @default.
- W2803727871 cites W4239617279 @default.
- W2803727871 doi "https://doi.org/10.3390/rs10060828" @default.
- W2803727871 hasPublicationYear "2018" @default.
- W2803727871 type Work @default.
- W2803727871 sameAs 2803727871 @default.
- W2803727871 citedByCount "20" @default.
- W2803727871 countsByYear W28037278712018 @default.
- W2803727871 countsByYear W28037278712019 @default.
- W2803727871 countsByYear W28037278712020 @default.
- W2803727871 countsByYear W28037278712021 @default.
- W2803727871 countsByYear W28037278712022 @default.
- W2803727871 countsByYear W28037278712023 @default.
- W2803727871 crossrefType "journal-article" @default.
- W2803727871 hasAuthorship W2803727871A5000768785 @default.
- W2803727871 hasAuthorship W2803727871A5053803963 @default.
- W2803727871 hasAuthorship W2803727871A5064605531 @default.
- W2803727871 hasAuthorship W2803727871A5068404849 @default.