Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803775013> ?p ?o ?g. }
- W2803775013 endingPage "70" @default.
- W2803775013 startingPage "70" @default.
- W2803775013 abstract "Silage is the main feed in milk and ruminant meat production in Northern Europe. Novel drone-based remote sensing technology could be utilized in many phases of silage production, but advanced methods of utilizing these data are still developing. Grass swards are harvested three times in season, and fertilizer is applied similarly three times—once for each harvest when aiming at maximum yields. Timely information of the yield is thus necessary several times in a season for making decisions on harvesting time and rate of fertilizer application. Our objective was to develop and assess a novel machine learning technique for the estimation of canopy height and biomass of grass swards utilizing multispectral photogrammetric camera data. Variation in the studied crop stand was generated using six different nitrogen fertilizer levels and four harvesting dates. The sward was a timothy-meadow fescue mixture dominated by timothy. We extracted various features from the remote sensing data by combining an ultra-high resolution photogrammetric canopy height model (CHM) with a pixel size of 1.0 cm and red, green, blue (RGB) and near-infrared range intensity values and different vegetation indices (VI) extracted from orthophoto mosaics. We compared the performance of multiple linear regression (MLR) and a Random Forest estimator (RF) with different combinations of the CHM, RGB and VI features. The best estimation results with both methods were obtained by combining CHM and VI features and all three feature classes (CHM, RGB and VI features). Both estimators provided equally accurate results. The Pearson correlation coefficients (PCC) and Root Mean Square Errors (RMSEs) of the estimations were at best 0.98 and 0.34 t/ha (12.70%), respectively, for the dry matter yield (DMY) and 0.98 and 1.22 t/ha (11.05%), respectively, for the fresh yield (FY) estimations. Our assessment of the sensitivity of the method with respect to different development stages and different amounts of biomass showed that the use of the machine learning technique that integrated multiple features improved the results in comparison to the simple linear regressions. These results were extremely promising, showing that the proposed multispectral photogrammetric approach can provide accurate biomass estimates of grass swards, and could be developed as a low-cost tool for practical farming applications." @default.
- W2803775013 created "2018-06-01" @default.
- W2803775013 creator A5010833142 @default.
- W2803775013 creator A5011450440 @default.
- W2803775013 creator A5018473742 @default.
- W2803775013 creator A5037907825 @default.
- W2803775013 creator A5045296703 @default.
- W2803775013 creator A5067736570 @default.
- W2803775013 date "2018-05-17" @default.
- W2803775013 modified "2023-10-03" @default.
- W2803775013 title "A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone" @default.
- W2803775013 cites W1442930683 @default.
- W2803775013 cites W1900944452 @default.
- W2803775013 cites W1969234587 @default.
- W2803775013 cites W1969245801 @default.
- W2803775013 cites W1973166636 @default.
- W2803775013 cites W1981527205 @default.
- W2803775013 cites W1982216854 @default.
- W2803775013 cites W1990653740 @default.
- W2803775013 cites W1991739869 @default.
- W2803775013 cites W1995029758 @default.
- W2803775013 cites W2000102737 @default.
- W2803775013 cites W2006588449 @default.
- W2803775013 cites W2011253871 @default.
- W2803775013 cites W2012686349 @default.
- W2803775013 cites W2017859040 @default.
- W2803775013 cites W2019967662 @default.
- W2803775013 cites W2020520344 @default.
- W2803775013 cites W2026446766 @default.
- W2803775013 cites W2035749736 @default.
- W2803775013 cites W2043443000 @default.
- W2803775013 cites W2055186043 @default.
- W2803775013 cites W2059472991 @default.
- W2803775013 cites W2063623478 @default.
- W2803775013 cites W2064636932 @default.
- W2803775013 cites W2069209512 @default.
- W2803775013 cites W2069556122 @default.
- W2803775013 cites W2069747286 @default.
- W2803775013 cites W2074464158 @default.
- W2803775013 cites W2075818603 @default.
- W2803775013 cites W2083805427 @default.
- W2803775013 cites W2086274335 @default.
- W2803775013 cites W2088683152 @default.
- W2803775013 cites W2094447963 @default.
- W2803775013 cites W2123101917 @default.
- W2803775013 cites W2133125644 @default.
- W2803775013 cites W2142635246 @default.
- W2803775013 cites W2145243492 @default.
- W2803775013 cites W2153958436 @default.
- W2803775013 cites W2162842531 @default.
- W2803775013 cites W2163450852 @default.
- W2803775013 cites W2261059368 @default.
- W2803775013 cites W2282242249 @default.
- W2803775013 cites W2328015724 @default.
- W2803775013 cites W2342626385 @default.
- W2803775013 cites W2347132717 @default.
- W2803775013 cites W2402048088 @default.
- W2803775013 cites W2413910992 @default.
- W2803775013 cites W2562786021 @default.
- W2803775013 cites W2582705054 @default.
- W2803775013 cites W2598533724 @default.
- W2803775013 cites W2736116482 @default.
- W2803775013 cites W2751223463 @default.
- W2803775013 cites W2784201940 @default.
- W2803775013 cites W2793190356 @default.
- W2803775013 cites W2803465698 @default.
- W2803775013 cites W2911964244 @default.
- W2803775013 cites W4239584993 @default.
- W2803775013 doi "https://doi.org/10.3390/agriculture8050070" @default.
- W2803775013 hasPublicationYear "2018" @default.
- W2803775013 type Work @default.
- W2803775013 sameAs 2803775013 @default.
- W2803775013 citedByCount "117" @default.
- W2803775013 countsByYear W28037750132018 @default.
- W2803775013 countsByYear W28037750132019 @default.
- W2803775013 countsByYear W28037750132020 @default.
- W2803775013 countsByYear W28037750132021 @default.
- W2803775013 countsByYear W28037750132022 @default.
- W2803775013 countsByYear W28037750132023 @default.
- W2803775013 crossrefType "journal-article" @default.
- W2803775013 hasAuthorship W2803775013A5010833142 @default.
- W2803775013 hasAuthorship W2803775013A5011450440 @default.
- W2803775013 hasAuthorship W2803775013A5018473742 @default.
- W2803775013 hasAuthorship W2803775013A5037907825 @default.
- W2803775013 hasAuthorship W2803775013A5045296703 @default.
- W2803775013 hasAuthorship W2803775013A5067736570 @default.
- W2803775013 hasBestOaLocation W28037750131 @default.
- W2803775013 hasConcept C101000010 @default.
- W2803775013 hasConcept C115540264 @default.
- W2803775013 hasConcept C117455697 @default.
- W2803775013 hasConcept C137660486 @default.
- W2803775013 hasConcept C154945302 @default.
- W2803775013 hasConcept C173163844 @default.
- W2803775013 hasConcept C205649164 @default.
- W2803775013 hasConcept C2779370140 @default.
- W2803775013 hasConcept C33923547 @default.
- W2803775013 hasConcept C39432304 @default.
- W2803775013 hasConcept C41008148 @default.