Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803793592> ?p ?o ?g. }
- W2803793592 endingPage "1242" @default.
- W2803793592 startingPage "1234" @default.
- W2803793592 abstract "Computer-aided diagnosis (CAD) is an attractive topic in Alzheimer's disease (AD) research. Many algorithms are based on a relatively large training dataset. However, small hospitals are usually unable to collect sufficient training samples for robust classification. Although data sharing is expanding in scientific research, it is unclear whether a model based on one dataset is well suited for other data sources. Using a small dataset from a local hospital and a large shared dataset from the AD neuroimaging initiative, we conducted a heterogeneity analysis and found that different functional magnetic resonance imaging data sources show different sample distributions in feature space. In addition, we proposed an effective knowledge transfer method to diminish the disparity among different datasets and improve the classification accuracy on datasets with insufficient training samples. The accuracy increased by approximately 20% compared with that of a model based only on the original small dataset. The results demonstrated that the proposed approach is a novel and effective method for CAD in hospitals with only small training datasets. It solved the challenge of limited sample size in detection of AD, which is a common issue but lack of adequate attention. Furthermore, this paper sheds new light on effective use of multi-source data for neurological disease diagnosis." @default.
- W2803793592 created "2018-06-01" @default.
- W2803793592 creator A5008171524 @default.
- W2803793592 creator A5034235467 @default.
- W2803793592 creator A5040751828 @default.
- W2803793592 creator A5047526883 @default.
- W2803793592 creator A5069201529 @default.
- W2803793592 date "2019-05-01" @default.
- W2803793592 modified "2023-10-15" @default.
- W2803793592 title "Detecting Alzheimer's Disease on Small Dataset: A Knowledge Transfer Perspective" @default.
- W2803793592 cites W1162227652 @default.
- W2803793592 cites W1628636148 @default.
- W2803793592 cites W16705017 @default.
- W2803793592 cites W1715858500 @default.
- W2803793592 cites W1722318740 @default.
- W2803793592 cites W1916649859 @default.
- W2803793592 cites W1963996846 @default.
- W2803793592 cites W1971029402 @default.
- W2803793592 cites W1975760079 @default.
- W2803793592 cites W1978408307 @default.
- W2803793592 cites W1982696459 @default.
- W2803793592 cites W1985967702 @default.
- W2803793592 cites W1991933335 @default.
- W2803793592 cites W2000292092 @default.
- W2803793592 cites W2002581945 @default.
- W2803793592 cites W2003131754 @default.
- W2803793592 cites W2005821483 @default.
- W2803793592 cites W2009849234 @default.
- W2803793592 cites W2011541551 @default.
- W2803793592 cites W2015629132 @default.
- W2803793592 cites W2025560784 @default.
- W2803793592 cites W2025985542 @default.
- W2803793592 cites W2026553142 @default.
- W2803793592 cites W2027829736 @default.
- W2803793592 cites W2040412343 @default.
- W2803793592 cites W2042557239 @default.
- W2803793592 cites W2046090892 @default.
- W2803793592 cites W2058046532 @default.
- W2803793592 cites W2063225300 @default.
- W2803793592 cites W2067808181 @default.
- W2803793592 cites W2067825653 @default.
- W2803793592 cites W2074267385 @default.
- W2803793592 cites W2075105655 @default.
- W2803793592 cites W2076301067 @default.
- W2803793592 cites W2078551663 @default.
- W2803793592 cites W2081808793 @default.
- W2803793592 cites W2085269372 @default.
- W2803793592 cites W2092594036 @default.
- W2803793592 cites W2094286293 @default.
- W2803793592 cites W2104068492 @default.
- W2803793592 cites W2112527401 @default.
- W2803793592 cites W2114555409 @default.
- W2803793592 cites W2128053425 @default.
- W2803793592 cites W2131406087 @default.
- W2803793592 cites W2138991775 @default.
- W2803793592 cites W2146089088 @default.
- W2803793592 cites W2153171432 @default.
- W2803793592 cites W2155423555 @default.
- W2803793592 cites W2156220037 @default.
- W2803793592 cites W2168372372 @default.
- W2803793592 cites W2223851414 @default.
- W2803793592 cites W2284191928 @default.
- W2803793592 cites W2294736737 @default.
- W2803793592 cites W2297703974 @default.
- W2803793592 cites W2345678177 @default.
- W2803793592 cites W2413867752 @default.
- W2803793592 cites W2473821704 @default.
- W2803793592 cites W2502203196 @default.
- W2803793592 cites W2518298328 @default.
- W2803793592 cites W2573640914 @default.
- W2803793592 cites W2593212236 @default.
- W2803793592 cites W2725237741 @default.
- W2803793592 cites W4239181501 @default.
- W2803793592 doi "https://doi.org/10.1109/jbhi.2018.2839771" @default.
- W2803793592 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29994324" @default.
- W2803793592 hasPublicationYear "2019" @default.
- W2803793592 type Work @default.
- W2803793592 sameAs 2803793592 @default.
- W2803793592 citedByCount "41" @default.
- W2803793592 countsByYear W28037935922018 @default.
- W2803793592 countsByYear W28037935922019 @default.
- W2803793592 countsByYear W28037935922020 @default.
- W2803793592 countsByYear W28037935922021 @default.
- W2803793592 countsByYear W28037935922022 @default.
- W2803793592 countsByYear W28037935922023 @default.
- W2803793592 crossrefType "journal-article" @default.
- W2803793592 hasAuthorship W2803793592A5008171524 @default.
- W2803793592 hasAuthorship W2803793592A5034235467 @default.
- W2803793592 hasAuthorship W2803793592A5040751828 @default.
- W2803793592 hasAuthorship W2803793592A5047526883 @default.
- W2803793592 hasAuthorship W2803793592A5069201529 @default.
- W2803793592 hasConcept C105795698 @default.
- W2803793592 hasConcept C118552586 @default.
- W2803793592 hasConcept C119857082 @default.
- W2803793592 hasConcept C124101348 @default.
- W2803793592 hasConcept C12713177 @default.
- W2803793592 hasConcept C127413603 @default.
- W2803793592 hasConcept C129848803 @default.