Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803833507> ?p ?o ?g. }
- W2803833507 endingPage "188" @default.
- W2803833507 startingPage "170" @default.
- W2803833507 abstract "Abstract The diffusion coefficient is a key property of materials. Electrochemical impedance spectroscopy (EIS) is a routine tool to determine the diffusion coefficient. Albeit being versatile for varied electrochemical systems and powerful in distinguishing multiple processes in a wide frequency spectrum, the EIS method usually needs a physical model in data analysis; misuse of models leads researchers to provide unwarranted interpretation of EIS data. Regarding diffusion, the simple and elegant formula developed by Warburg has been serving as the canonical model for more than a century. The classical Warburg model has very strict assumptions, however, it is used in a wide range of scenarios where assumptions may not be satisfied. It is the main purpose of the present article to define the boundary of applicability of the Warburg model and develop alternative models for cases beyond the boundary. In so doing, the Warburg model is revisited and its limitations and assumptions are scrutinized. Afterwards, new impedance models for more complicated and realistic scenarios are developed. The present article features: (1) generalization of the boundary condition when treating diffusion in bounded space and geometrical variants; (2) diffusion impedance in porous electrodes and fractals; (3) the effect of electrostatic interactions and coupling between diffusion and migration on the diffusion impedance in electrolytic solutions; (4) introduction of homotopy perturbation method to treat the convective diffusion; (5) physical interpretations of diffusion impedance behaviors." @default.
- W2803833507 created "2018-06-01" @default.
- W2803833507 creator A5052713328 @default.
- W2803833507 date "2018-08-01" @default.
- W2803833507 modified "2023-10-17" @default.
- W2803833507 title "Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond" @default.
- W2803833507 cites W125124066 @default.
- W2803833507 cites W1518328431 @default.
- W2803833507 cites W152786763 @default.
- W2803833507 cites W1545192663 @default.
- W2803833507 cites W1580721370 @default.
- W2803833507 cites W1599969915 @default.
- W2803833507 cites W1937006340 @default.
- W2803833507 cites W1967785628 @default.
- W2803833507 cites W1969341471 @default.
- W2803833507 cites W1971950898 @default.
- W2803833507 cites W1972251588 @default.
- W2803833507 cites W1975187247 @default.
- W2803833507 cites W1981150470 @default.
- W2803833507 cites W1982447421 @default.
- W2803833507 cites W1983477784 @default.
- W2803833507 cites W1987852943 @default.
- W2803833507 cites W1992668449 @default.
- W2803833507 cites W1995577824 @default.
- W2803833507 cites W1996012937 @default.
- W2803833507 cites W1996846601 @default.
- W2803833507 cites W1997836225 @default.
- W2803833507 cites W2000453784 @default.
- W2803833507 cites W2001914764 @default.
- W2803833507 cites W2003806194 @default.
- W2803833507 cites W2005471446 @default.
- W2803833507 cites W2006390026 @default.
- W2803833507 cites W2007705914 @default.
- W2803833507 cites W2008468708 @default.
- W2803833507 cites W2014685797 @default.
- W2803833507 cites W2019188325 @default.
- W2803833507 cites W2020884049 @default.
- W2803833507 cites W2027322633 @default.
- W2803833507 cites W2029713333 @default.
- W2803833507 cites W2037812287 @default.
- W2803833507 cites W2042240804 @default.
- W2803833507 cites W2045075754 @default.
- W2803833507 cites W2047696693 @default.
- W2803833507 cites W2054825287 @default.
- W2803833507 cites W2055600542 @default.
- W2803833507 cites W2056420957 @default.
- W2803833507 cites W2060225065 @default.
- W2803833507 cites W2062532096 @default.
- W2803833507 cites W2064159781 @default.
- W2803833507 cites W2064547799 @default.
- W2803833507 cites W2064615786 @default.
- W2803833507 cites W2072681519 @default.
- W2803833507 cites W2074963658 @default.
- W2803833507 cites W2076685959 @default.
- W2803833507 cites W2077754437 @default.
- W2803833507 cites W2081226966 @default.
- W2803833507 cites W2087254904 @default.
- W2803833507 cites W2092961623 @default.
- W2803833507 cites W2104375452 @default.
- W2803833507 cites W2111271983 @default.
- W2803833507 cites W2111886042 @default.
- W2803833507 cites W2120456122 @default.
- W2803833507 cites W2122437206 @default.
- W2803833507 cites W2127931466 @default.
- W2803833507 cites W2144522870 @default.
- W2803833507 cites W2146982905 @default.
- W2803833507 cites W2158688849 @default.
- W2803833507 cites W2159022020 @default.
- W2803833507 cites W2284753722 @default.
- W2803833507 cites W2300031958 @default.
- W2803833507 cites W2314410311 @default.
- W2803833507 cites W2467653293 @default.
- W2803833507 cites W2508914177 @default.
- W2803833507 cites W2550943138 @default.
- W2803833507 cites W2551954269 @default.
- W2803833507 cites W2562730294 @default.
- W2803833507 cites W2584128436 @default.
- W2803833507 cites W2587472908 @default.
- W2803833507 cites W2605173245 @default.
- W2803833507 cites W2612751663 @default.
- W2803833507 cites W2621090440 @default.
- W2803833507 cites W2729945022 @default.
- W2803833507 cites W2738614322 @default.
- W2803833507 cites W2739316821 @default.
- W2803833507 cites W2753367371 @default.
- W2803833507 cites W2753646127 @default.
- W2803833507 cites W2778770058 @default.
- W2803833507 cites W304875701 @default.
- W2803833507 cites W3098736607 @default.
- W2803833507 cites W934576259 @default.
- W2803833507 doi "https://doi.org/10.1016/j.electacta.2018.05.136" @default.
- W2803833507 hasPublicationYear "2018" @default.
- W2803833507 type Work @default.
- W2803833507 sameAs 2803833507 @default.
- W2803833507 citedByCount "164" @default.
- W2803833507 countsByYear W28038335072012 @default.
- W2803833507 countsByYear W28038335072018 @default.
- W2803833507 countsByYear W28038335072019 @default.