Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803878501> ?p ?o ?g. }
- W2803878501 endingPage "206" @default.
- W2803878501 startingPage "93" @default.
- W2803878501 abstract "Stem cells (SCs) can self-renew or differentiate into different cell types, which makes them an ideal cell source for therapies based on tissue engineering. Despite these characteristics, the employment of SCs in clinics has seen alternating fortunes because of our limited understanding of the signals governing SC functions and fate, which impairs our ability to engineer systems to deliver SCs in vivo and to guide their correct biological processes. However, experimental evidence demonstrated that SCs are able to recognize biochemical and biophysical signals displayed by material surfaces; most importantly, cells integrate these signals to elaborate fate decisions. Although the mechanisms underlying signal recognition and response have not been thoroughly characterized, there is a general consensus that the cell adhesion process plays a central role. Adhesion represents a communication gate between exogenous signals and intracellular signaling cascades involving the cytoskeleton and the nucleus. In this work we present recent findings on materials engineered to control cell functions through adhesion processes. In particular, we emphasize the role of material signals on SC behavior. Finally, we discuss a few sensing and transductive molecular mechanisms in an effort to draw out unifying elements concerning cell recognition of and reaction to biophysical/biochemical material signals aimed at controlling cell fate through cell adhesion. Microneedles and nanomedicine are two out of several active innovative approaches used to enhance the transdermal drug and vaccine delivery. Their application individually or in combination have shown to be very promising and attracted considerable interest by researchers from both industry and academia over the last 2 decades. Combining the two technologies has growing interest and has shown to be promising approach not only in enhancing the transdermal drug and vaccine permeation for even difficult drug molecules, such as hydrophilic and macromolecules, but also impart protection and controlling the drug release rates. In Subchapter 2.2, we aim to highlight the advances, which has been made in using these two technologies as an individual or in combination with drug and vaccine delivery. Metal implants, in the form of screws, plates, or pins, are extensively used in the treatment of fractures and nonunions or as replacements for malfunctioned joints. These bones implants face many challenges for acceptance and survival upon insertion in the human body. These challenges include severe inflammation, bacterial invasion, and poor biointegration with the traumatized tissue. Titania (TiO2) nanotubes (TNTs) arrays engineered on the surface of Ti implants by simple and scalable electrochemical anodization process, which have been widely explored as a new nanoengineering approach to improve the process of osseointegration and at the same time to be used as depots for loading drugs and their controllable release for localized delivery, and therapeutic purpose. Several advanced functions can be introduced into these multifunctional implants, including biopolymers, nanoparticles or external stimulation (e.g., electrical, electromagnetic and ultrasound) to release the loaded therapeutic agents in a desired manner when required. Subchapter 2.3 highlights the developed concepts of drug releasing implants based on TNTs for enhancing osteogenesis at the bone-implant interface, as an alternative approach to systemic delivery of therapeutic agents. The reconstruction of skeletal defects is a continuing challenge. Bone and dentin are mineralized hard tissues. The primary inorganic component of these two tissues is crystalline hydroxyapatite and the primary organic component is type I collagen, and these two components are cell-manufactured materials. Tissue-engineering strategies using novel biomaterials have emerged as a promising potential for the treatment of mineralization defects. Some of the recent bioinspired biomaterials utilize proteins and peptides as nanoscale building blocks. A key functional property is that biomaterials need to be cell-compatible and mimic the dynamic nature of the extracellular matrix. ECM is a complex environment comprising a plethora of macromolecules. Another class of novel biomaterials that are currently being developed are peptide-based hydrogels. Peptide-based engineered scaffolds present several advantages over traditional protein scaffolds as the control over hydrogel properties and can be easily tailored to the requirement of the tissue. Biomaterials generated by the self-assembly process have varied applications as it mimics nature’s method of material synthesis. Therefore, concepts of protein-based self-assembly can be utilized for constructing useful biomaterials." @default.
- W2803878501 created "2018-06-01" @default.
- W2803878501 creator A5001311671 @default.
- W2803878501 creator A5002441928 @default.
- W2803878501 creator A5003652299 @default.
- W2803878501 creator A5005209374 @default.
- W2803878501 creator A5009321113 @default.
- W2803878501 creator A5009626082 @default.
- W2803878501 creator A5027637761 @default.
- W2803878501 creator A5028263985 @default.
- W2803878501 creator A5030812621 @default.
- W2803878501 creator A5035668087 @default.
- W2803878501 creator A5054560195 @default.
- W2803878501 creator A5065525714 @default.
- W2803878501 creator A5081385672 @default.
- W2803878501 creator A5085170323 @default.
- W2803878501 date "2018-01-01" @default.
- W2803878501 modified "2023-10-06" @default.
- W2803878501 title "Nanotechnologies for tissue engineering and regeneration" @default.
- W2803878501 cites W1500109515 @default.
- W2803878501 cites W15049667 @default.
- W2803878501 cites W1510225188 @default.
- W2803878501 cites W1541116624 @default.
- W2803878501 cites W1547736903 @default.
- W2803878501 cites W1550620821 @default.
- W2803878501 cites W1575432087 @default.
- W2803878501 cites W1581347043 @default.
- W2803878501 cites W1732918109 @default.
- W2803878501 cites W1780423747 @default.
- W2803878501 cites W1840001967 @default.
- W2803878501 cites W1933816788 @default.
- W2803878501 cites W1962785907 @default.
- W2803878501 cites W1963892111 @default.
- W2803878501 cites W1963918885 @default.
- W2803878501 cites W1964292608 @default.
- W2803878501 cites W1964974921 @default.
- W2803878501 cites W1965660718 @default.
- W2803878501 cites W1965758660 @default.
- W2803878501 cites W1965822884 @default.
- W2803878501 cites W1966414508 @default.
- W2803878501 cites W1966775740 @default.
- W2803878501 cites W1966853382 @default.
- W2803878501 cites W1966901825 @default.
- W2803878501 cites W1967146478 @default.
- W2803878501 cites W1967188390 @default.
- W2803878501 cites W1968382042 @default.
- W2803878501 cites W1968392514 @default.
- W2803878501 cites W1968770683 @default.
- W2803878501 cites W1969430572 @default.
- W2803878501 cites W1969568402 @default.
- W2803878501 cites W1969964831 @default.
- W2803878501 cites W1970883344 @default.
- W2803878501 cites W1971360836 @default.
- W2803878501 cites W1971607282 @default.
- W2803878501 cites W1971984469 @default.
- W2803878501 cites W1972171579 @default.
- W2803878501 cites W1972480801 @default.
- W2803878501 cites W1973058955 @default.
- W2803878501 cites W1973615948 @default.
- W2803878501 cites W1974381935 @default.
- W2803878501 cites W1974775001 @default.
- W2803878501 cites W1975132186 @default.
- W2803878501 cites W1975428589 @default.
- W2803878501 cites W1975810455 @default.
- W2803878501 cites W1976865990 @default.
- W2803878501 cites W1977494152 @default.
- W2803878501 cites W1977569147 @default.
- W2803878501 cites W1977759474 @default.
- W2803878501 cites W1977812165 @default.
- W2803878501 cites W1978514943 @default.
- W2803878501 cites W1978571812 @default.
- W2803878501 cites W1979038578 @default.
- W2803878501 cites W1979245454 @default.
- W2803878501 cites W1979268896 @default.
- W2803878501 cites W1979284372 @default.
- W2803878501 cites W1979293368 @default.
- W2803878501 cites W1979383751 @default.
- W2803878501 cites W1979452725 @default.
- W2803878501 cites W1979499474 @default.
- W2803878501 cites W1980176016 @default.
- W2803878501 cites W1980873308 @default.
- W2803878501 cites W1981701289 @default.
- W2803878501 cites W1981760171 @default.
- W2803878501 cites W1982125899 @default.
- W2803878501 cites W1982144814 @default.
- W2803878501 cites W1982149350 @default.
- W2803878501 cites W1982691790 @default.
- W2803878501 cites W1982827028 @default.
- W2803878501 cites W1983115520 @default.
- W2803878501 cites W1983122921 @default.
- W2803878501 cites W1983271466 @default.
- W2803878501 cites W1984121549 @default.
- W2803878501 cites W1984136242 @default.
- W2803878501 cites W1984319959 @default.
- W2803878501 cites W1984920361 @default.
- W2803878501 cites W1986157072 @default.
- W2803878501 cites W1987654508 @default.
- W2803878501 cites W1988425358 @default.