Matches in SemOpenAlex for { <https://semopenalex.org/work/W2803921148> ?p ?o ?g. }
- W2803921148 endingPage "128" @default.
- W2803921148 startingPage "115" @default.
- W2803921148 abstract "Abstract With the maturation of methods for estimating aboveground forest biomass by remote sensing, researchers increasingly need test data, particularly ground reference data, that are large enough to fine-tune existing approaches and test their robustness under diverse conditions. In this context, realistic synthetic datasets present an interesting alternative to costly and limited field data. Here, we present a new approach to simulate realistic canopy height and cover type data by combining an individual-tree forest simulator with real LiDAR point clouds of individual trees. We demonstrate the utility of our approach by re-examining the influence of field plot size on the predictive power of remote-sensing models for biomass estimation. Our approach with a complete (wall-to-wall) field reference dataset and matching synthetic remote sensing data allowed us to not only perform internal cross-validations with field plots that were used to fit the model (as in studies with real data), but to also consider the quality of model predictions to a standardized spatial grid or to the entire region. Our results confirm earlier reports of smaller predictive errors with increased field plot sizes under internal model validation (RMSE of 125 t/ha at 10 m field plot size and RMSE of 40 t/ha for 50 m field plots). However, we show that this is mainly an artifact of comparing the models with the same data they were fit, thus with validation data of different scales. When validating on a grid with standardized scale, smaller field plots performed almost equally well as larger field plots (small RMSE decrease between 4 t/ha and 7 t/ha when going from 10 m to 50 m plots), and even outperformed them if we assumed that increasing the plot size means that fewer field plots can be obtained (small RMSE increase between 9 t/ha and 12 t/ha when going from 10 m to 50 m plots). We conclude that synthetic remote sensing datasets are a useful tool for method testing. The suggested approach may be used to reexamine our current methodological understanding, which is often based on tests with real data of very limited sizes, as well as to optimize workflows, model choices and data collection. A wider use of synthetic data could be instrumental in improving remote sensing methodology." @default.
- W2803921148 created "2018-06-01" @default.
- W2803921148 creator A5002648105 @default.
- W2803921148 creator A5026481459 @default.
- W2803921148 creator A5063873988 @default.
- W2803921148 date "2018-08-01" @default.
- W2803921148 modified "2023-09-28" @default.
- W2803921148 title "Using synthetic data to evaluate the benefits of large field plots for forest biomass estimation with LiDAR" @default.
- W2803921148 cites W1024118997 @default.
- W2803921148 cites W1411779959 @default.
- W2803921148 cites W1930004075 @default.
- W2803921148 cites W1930140904 @default.
- W2803921148 cites W1958381438 @default.
- W2803921148 cites W1965759515 @default.
- W2803921148 cites W1968474682 @default.
- W2803921148 cites W1973503268 @default.
- W2803921148 cites W1975417404 @default.
- W2803921148 cites W1978283906 @default.
- W2803921148 cites W1982886002 @default.
- W2803921148 cites W1984118740 @default.
- W2803921148 cites W2002730835 @default.
- W2803921148 cites W2003114532 @default.
- W2803921148 cites W2004583421 @default.
- W2803921148 cites W2006644210 @default.
- W2803921148 cites W2008674189 @default.
- W2803921148 cites W2009023431 @default.
- W2803921148 cites W2012409721 @default.
- W2803921148 cites W2014250695 @default.
- W2803921148 cites W2014383059 @default.
- W2803921148 cites W2020520344 @default.
- W2803921148 cites W2022719221 @default.
- W2803921148 cites W2029875384 @default.
- W2803921148 cites W2040383628 @default.
- W2803921148 cites W2050499851 @default.
- W2803921148 cites W2056232314 @default.
- W2803921148 cites W2056968878 @default.
- W2803921148 cites W2060012749 @default.
- W2803921148 cites W2060297838 @default.
- W2803921148 cites W2073163280 @default.
- W2803921148 cites W2080548608 @default.
- W2803921148 cites W2081127218 @default.
- W2803921148 cites W2085520997 @default.
- W2803921148 cites W2105048158 @default.
- W2803921148 cites W2105593416 @default.
- W2803921148 cites W2122798004 @default.
- W2803921148 cites W2127243393 @default.
- W2803921148 cites W2127354426 @default.
- W2803921148 cites W2128565996 @default.
- W2803921148 cites W2131258618 @default.
- W2803921148 cites W2146753997 @default.
- W2803921148 cites W2148964762 @default.
- W2803921148 cites W2165597803 @default.
- W2803921148 cites W2169489878 @default.
- W2803921148 cites W2170329466 @default.
- W2803921148 cites W2170591795 @default.
- W2803921148 cites W2193261635 @default.
- W2803921148 cites W2193608035 @default.
- W2803921148 cites W2302803999 @default.
- W2803921148 cites W2482464033 @default.
- W2803921148 cites W2494694935 @default.
- W2803921148 cites W2510217851 @default.
- W2803921148 cites W2512156656 @default.
- W2803921148 cites W2515306179 @default.
- W2803921148 cites W2570444748 @default.
- W2803921148 cites W2594201541 @default.
- W2803921148 cites W2625273961 @default.
- W2803921148 cites W2769933020 @default.
- W2803921148 cites W2911964244 @default.
- W2803921148 doi "https://doi.org/10.1016/j.rse.2018.05.007" @default.
- W2803921148 hasPublicationYear "2018" @default.
- W2803921148 type Work @default.
- W2803921148 sameAs 2803921148 @default.
- W2803921148 citedByCount "26" @default.
- W2803921148 countsByYear W28039211482019 @default.
- W2803921148 countsByYear W28039211482020 @default.
- W2803921148 countsByYear W28039211482021 @default.
- W2803921148 countsByYear W28039211482022 @default.
- W2803921148 countsByYear W28039211482023 @default.
- W2803921148 crossrefType "journal-article" @default.
- W2803921148 hasAuthorship W2803921148A5002648105 @default.
- W2803921148 hasAuthorship W2803921148A5026481459 @default.
- W2803921148 hasAuthorship W2803921148A5063873988 @default.
- W2803921148 hasConcept C111368507 @default.
- W2803921148 hasConcept C115540264 @default.
- W2803921148 hasConcept C127313418 @default.
- W2803921148 hasConcept C147103442 @default.
- W2803921148 hasConcept C162324750 @default.
- W2803921148 hasConcept C187736073 @default.
- W2803921148 hasConcept C202444582 @default.
- W2803921148 hasConcept C28631016 @default.
- W2803921148 hasConcept C33923547 @default.
- W2803921148 hasConcept C39432304 @default.
- W2803921148 hasConcept C51399673 @default.
- W2803921148 hasConcept C54286561 @default.
- W2803921148 hasConcept C62649853 @default.
- W2803921148 hasConcept C96250715 @default.
- W2803921148 hasConcept C9652623 @default.
- W2803921148 hasConceptScore W2803921148C111368507 @default.